“Restoration” projects in the Bay Area are more destructive than constructive

I began studying the native plant movement and the “restoration” projects it spawned over 20 years ago when I learned about a proposal to change my neighborhood park in San Francisco in ways that were unacceptable to me.  Virtually all the trees in the park were non-native and the original proposal would have destroyed most of them.  The trees provide protection from the wind as well as a visual and sound screen from the dense residential neighborhood.  A treeless park in a windy location is not a comfortable place to visit.

The original plans would have made the park inhospitable to visitors for several other reasons, particularly by reducing recreational access to the park.  The prospect of losing my neighborhood park turned me into an activist.  I eventually learned there were similar plans for most major parks in San Francisco.  My neighborhood organized to prevent the destruction of our park and to some extent we succeeded.  However, we were unable to prevent the city-wide plan from being approved in 2006, after fighting against it for nearly 10 years.

When I  moved to the East Bay, I learned that similar projects are even more destructive than those in San Francisco,  I have spent the last 20 years informing myself and others of these plans, visiting those places, and using whatever public process that was available to oppose the plans.  The following paragraphs are brief descriptions of the projects I have studied for over 20 years.

Tree Destruction Projects in the East Bay

East Bay Municipal Utilities District (EBMUD) is the public utility that supplies our water in the East Bay.  To accomplish that task, EBMUD manages 28,000 acres of watershed land.  Like most open space in the Bay Area, the vegetation on EBMUD’s land is a mix of native and non-native species.  EBMUD destroys non-native trees which it believes to be a fire hazard.  EBMUD uses herbicides to “control” non-native vegetation, but it does not use herbicides on tree stumps to prevent resprouting.  EBMUD reports using 409 gallons of herbicide and 6 gallons of insecticide in 2019.  Of the total amount of herbicide, 338 gallons were glyphosate-based projects.  EBMUD says “minor amounts of rodenticide were applied by contractors.”

The East Bay Regional Park District (EBRPD) approved the “Wildfire Hazard Reduction and Resource Management Plan” and its Environmental Impact Report in 2009.  This plan is removing most eucalyptus, Monterey pine, and acacia from several thousand acres of parkland.  Forests are being thinned from an average density of 600 trees per acre to approximately 60 trees per acre.  These plans are being implemented and funding for completion of the project has been secured.  Herbicides are used to prevent the trees from resprouting and to destroy vegetation deemed “invasive.”

UC Berkeley clear-cut over 18,000 non-native trees from 150 acres in the Berkeley hills in the early 2000s.  UCB applied for a FEMA grant to complete their clear-cutting plans.  The FEMA grant would have clear cut over 50,000 non-native trees from about 300 acres of open space in the Berkeley hills.

Frowning Ridge, UC Berkeley, 2010

In 2016, FEMA cancelled grant funding as a result of a lawsuit and subsequent appeals from UCB were defeated several years later.  In 2019, UCB revised its original plans.  With the exception of clear-cutting ridgelines, the revised plan will thin non-native forests.  Herbicides will be used to prevent the trees from resprouting.

The City of Oakland applied for a FEMA grant in collaboration with UC Berkeley to clear cut non-native trees on over 120 acres in the Oakland hills.  That FEMA grant was cancelled at the same time UC Berkeley lost its grant funding.  Oakland has also revised its plans for “vegetation management” since the FEMA grant was cancelled.  The revised plan will thin non-native forests on over 2,000 acres of parks and open space.  The plan is undergoing environmental review prior to implementation.  Herbicide use to implement the plan is being contested.

Tree Destruction Projects in San Francisco

The Natural Areas Program (now called Natural Resources Division) of the City of San Francisco has destroyed thousands of trees in 32 designated areas of the city’s parks since the program began in 1995.  The management plan for the Natural Areas Program was approved in 2006, after 10 years of opposition.  The plan proposes to destroy an additional 18,500 trees over 15 feet tall and untold numbers of smaller trees that the plan chooses not to define as trees.   Herbicides are used to “control” non-native vegetation and prevent trees from resprouting after they are cut down.

Sutro Forest 2010

University of California at San Francisco (UCSF) began its effort over 20 years ago to destroy most non-native trees on 66 acres of Mount Sutro.  UCSF applied for a FEMA grant to implement those plans based on their claim that the Sutro Forest is a fire hazard.  UCSF withdrew the grant application after FEMA asked for evidence that the forest is a fire hazard.  San Francisco is cool and foggy in the summer, making fires rare and unlikely.

Sutro Forest with resprouts of destroyed trees. November 2019

UCSF’s plans to destroy most trees on Mount Sutro were approved in April 2018.  Many trees on Mount Sutro have been destroyed since the project was approved and more will be destroyed before the project is complete.  UCSF made a commitment to not use pesticides in the Sutro Forest.  Many of the trees that have been destroyed have therefore resprouted.  Unless the resprouts are cut back repeatedly, the forest is likely to regenerate over time.

  Tree Destruction Projects on Federal Lands

The federal government is one of the largest landowners in the Bay Area.  Golden Gate National Recreation Area (75,500 acres), Point Reyes National Seashore (28,800 acres), and Muir Woods National Monument are operated by the National Park Service.  The Presidio in San Francisco is a National Park that is presently controlled by a non-profit trust.  These parks have engaged in extensive tree-removal on the public lands they control.  Information available on their websites does not enable us to quantify the acres or number of trees that have been removed or are planned for removal in the future.  Therefore, we will describe those projects in the broad terms available to us.

There are two main categories of tree-destruction projects on these federal lands.  There are many large-scale “restoration” efforts that have required the removal of all non-native vegetation, including trees.  These attempts to eradicate non-native plants are based on a misguided belief native plants will magically return.  Herbicides are used by National Park Service to destroy non-native vegetation, although specific information is difficult to obtain because NPS is not responsive to inquiries and the federal public records law can take years to respond.

Eradication efforts fail regardless of method used

In “Lessons learned from invasive plant control experiments:  a systematic review and meta-analysis,” scientists analyzed 355 studies of attempts to eradicate non-native plants from 1960 to 2009.  The scientists determined the methods used and the efficacy of those methods.  More than 55% of the projects used herbicides, 34% used mechanical methods (such as mowing, digging, hand-pulling), 24% burned the vegetation, and 19% used all three methods.  The study found that herbicides most effectively reduced “invasive” plant cover, but this did not result in a substantial increase in native species because impacts to native species are greatest when projects involve herbicide application.  Burning projects reduced native coverage and increased non-native coverage. In other words, it doesn’t matter what method is used, eradicating non-native plants does not result in the return of native plants.   We didn’t need a study to tell us this.  We can see the results with our own eyes.

Flammability of plants is unrelated to nativity

The other, larger category of tree-removal projects on these federal lands are the so-called “fuel management projects.”  The flammability of non-native plants and trees is exaggerated in order to justify their destruction.   Native plants are not inherently less flammable than non-native plants.

In fact, native vegetation in California is fire adapted and fire dependent for germination and survival.  The California Native Plant Society recently revised its “Fire Recovery Guide. The Guide now says, “California native plants are not inherently more likely to burn than plants from other areas.”  This statement is the mirror image of what defenders of our urban forest have been saying for 25 years:  “Non-native trees are not inherently more flammable than native trees.”  Both statements are true and they send the same message: flammability is unrelated to the nativity of plants.  “Think instead about characteristics of plants,” according to the CNPS “Fire Recovery Guide.”

There are undoubtedly many other similar projects of which we are unaware.  I report only on projects that I have direct knowledge about and that I have visited.

Why I opposed these projects

The San Francisco Bay Area was nearly treeless before early settlers planted non-native trees.  Non-native trees were planted because they are better adapted to the harsh coastal winds than native trees.  The treeless grassland was grazed by deer and elk and burned by Native Americans to promote the growth of plants they ate and fed the animals they hunted.  Grazing and burning maintained the grassland, preventing natural succession to shrubs and trees.

Native Americans setting grass fire, painting by Frederic Remington, 1908

Modern land use and management policies have suppressed fire and reduced grazing in the Bay Area.  Consequently grasslands are naturally converting to chaparral and scrub.  Although managers of public lands often describe these changes in the landscape as “invasions,” Jon Keeley (Ph.D. biologist, USGS) considers them a natural succession“These changes are commonly referred to as shrub invasion or brush encroachment of grasslands.  Alternatively, this is perhaps best viewed as a natural recolonization of grasslands that have been maintained by millennia of human disturbance.” 

Early settlers planted trees to protect their residential communities and their crops from wind.  The urban forest also provides sound and visual screens around parks that are surrounded by dense residential neighborhoods.  Urban forests are storing carbon that is released as greenhouse gas when they are destroyed. They also reduce air pollution by filtering particulates from the air.

When trees are destroyed, the unshaded ground is quickly colonized by weeds that are then sprayed with herbicide.  Even environmental organizations that support the destruction of non-native trees agree about the results of these projects:

  • The California Native Plant Society predicted the post-project landscape in its written public comment on the Draft Environmental Impact Statement (DEIS) of the FEMA project in the East Bay hills with this rhetorical question: “What mechanism is being instituted by FEMA in this DEIS to guarantee a commitment of money and personnel for management of greatly increased acreages of newly created annual weedy grassland?”
  • The Audubon Society predicted the post-project landscape in its written public comment on the DEIS: “There is no support for the conclusion that native vegetation will return on its own.  This plan may not result in an increase in native trees and plants…Heavy mulching will delay or prevent the growth of native species.”

To summarize:  I am opposed to destroying our urban forests because they perform many important ecological functions, including providing habitat for wildlife.  Furthermore, the herbicides used to destroy the forest and control weeds that thrive in the absence of shade, damage the soil and create unnecessary health hazards to humans and other animals.

Deforestation and Climate Change

Climate change is the environmental issue of our time.  The fact that the climate is warming is indisputable and the consequences of the changes are becoming more evident.  Much of California has warmed over 3⁰ F since 1980.

Source: NASA

Consequences of Climate Change

The impact of climate change on biotic and abiotic realms has been far-reaching:

  • Sea Level Rise:  Temperatures in Polar Regions have increased the most because the ice is melting and sunlight that was reflected by the ice is now absorbed by the darker surface.  Melting ice has raised sea levels between 1993 and 2017 on average 3.1 mm (1/8th inch) per year at an accelerating rate.  The Intergovernmental Panel on Climate Change (IPCC) predicts that sea levels will rise .8 meter (2.6 feet) by the end of the century.  Coastal cities are flooding during high tides and storm surges.  Islands are disappearing.
  • Warming Ocean:  Marine life is dying in warming waters and coral reefs are dying because the water becomes more acidic as it absorbs more carbon dioxide (CO₂).
  • Extreme Weather Events:  The increase in the frequency and severity of droughts, hurricanes, tornados, heat waves, etc. is attributed to climate change.  These events kill plants and animals.  Extreme temperatures will eventually make some places in the world uninhabitable for most life.
  • WildfiresIncreased frequency and intensity of wildfires all over the world are caused by global warming and associated drought.

Given the life-threatening conditions created by the warming planet, it seems a small quibble to argue about whether or not the landscape must be transformed into some semblance of what it was in the 14th century, prior to global explorations and colonization by Europeans.  We are doing next to nothing to address the causes of climate change, yet we are spending approximately $25 billion per year on such “restorations” of historical landscapes.  When these projects kill trees, they make climate change worse.  California is considered a leader in addressing climate change in the US.  Yet, when calculating carbon loss to meet stated targets for reduction, California does not include carbon loss in the trees that are destroyed.

Causes of Climate Change

There is nearly universal agreement in the scientific community that climate change is caused by greenhouse gasses emitted by the activities of humans.

Note that “forestry” (more accurately described as “deforestation”) contributes more greenhouse gas emissions than transportation.  In both cases, carbon dioxide (CO₂) is the specific greenhouse gas that is emitted by these sectors of the economy.  In the case of transportation cars, airplanes, ships, etc. are using fossil fuels that emit CO₂ when burned.  In the case of deforestation, the CO₂ that is stored by trees during their lifetime is released into the atmosphere as a greenhouse gas when the tree is destroyed and its wood decays.  And the loss of the trees means there will be less carbon storage in the future. Even if new trees were planted, less carbon would be stored because carbon storage is largely a function of biomass; that is, bigger trees store more carbon:

Carbon Storage and Sequestration in San Francisco’s Urban Forest

d.b.h. = diameter at breast height, is the standard measure of tree size.  The bigger the tree, the more carbon it stores.  Source:  US Forest Service inventory of San Francisco’s urban forest, 2007.

Forests cover 31% of the land area on Earth and annually 75,700 square kilometers (18.7 million acres) of the forest is lost as a result of wildfire, clearing for agriculture and grazing, and logging for timber.  For the past 25 years, we have also been destroying trees just because they aren’t native.  In California we destroy eucalyptus, Monterey pine and cypress outside their small native range, and a few other non-native species.  In the Southwest we destroy tamarisk trees that were planted to control erosion.  On the East Coast we destroy ailanthus (tree of heaven).  In Florida we destroy malaleuca trees.  Native plant advocates call these trees “invasive,” but a more accurate description is that they are successful trees, well adapted to current climate conditions.  There are probably many other non-native trees on the long hit list of native plant advocates.

Other benefits of trees

Trees are valuable members of our communities for many reasons in addition to storing carbon.

  • Trees provide the windbreak that makes our parks and open spaces comfortable in windy coastal locations.
  • Trees are a visual and sound screen around our urban parks and residential properties.
  • Trees remove particulates from the air, reducing the air pollution that makes urban environments unhealthy.
  • The San Francisco Bay Area is very foggy during summer months.  Tall trees condense the fog, which falls to the ground as rain, adding 10 inches of annual precipitation in East Bay eucalyptus forests and 16 inches of annual precipitation in San Francisco’s eucalyptus forests.
  • Forests transpire water from their leaves that falls back to earth as rainfall.  Where forests are destroyed, rainfall decreases significantly.
Transpiration is the process by which moisture is carried from tree and plant roots to the leaves, where it changes to vapor and is released to the atmosphere. Interestingly, a large oak tree can draw 40,000 gallons of water a year up through the roots and evaporate that moisture through the leaves.  Source:  USGS
  • Trees stabilize the soil with their roots, preventing erosion on steep hillsides that become unstable when trees are destroyed.
  • The roots of trees absorb rainfall that would otherwise run off the land without being absorbed into the soil.  The run off washes the top soil away, clogging rivers and streams and reducing the fertility of the soil.

Case Studies

We don’t need to speculate about the consequences of destroying trees because there are many specific examples of the negative impact of destroying large numbers of trees.  Here are two examples, one modern and one historical.

The island nation of Comoros, off East Africa, once had an extensive cloud forest, a forest in which trees are often surrounded by low-level cloud cover. Cloud forests, such as the eucalyptus trees shrouded in fog on Mount Sutro in San Francisco, condense large amounts of moisture out of the clouds that then falls onto the ground. Fog drip in San Francisco’s eucalyptus forests adds sixteen inches of rainfall each year in those forests.

Eucalyptus canopy on east side of Glen Canyon Park, taken from Turquoise Way December 2012, before tree destruction began. Courtesy San Francisco Forest Alliance

The delicate ecosystem on Comoros was disrupted when the cloud forests were cleared to make way for farmland. Between 1995 and 2014 about 80% of the remaining forest was cut down. The loss of trees disrupted the rainfall cycle on the islands. The moisture that the cloud forest was condensing from the fog was lost to the ground when the trees were destroyed. That ground moisture was then no longer transpired back into the air by the trees that had been destroyed, resulting in less rainfall. The disruption caused waterways to dry out, and left once-fertile soil exposed to erosion, with the loss of nutrients in the soil that remains. Comoros has lost 40 permanent rivers in the last 50 years. There is no longer enough water for agriculture or the daily household needs of the population.

Restoring forests is a challenge, and cloud forest can be particularly difficult. “It’s impossible to replace it,” said a cloud forest specialist at the University of York in England. “You need to save them before they’re gone.” Comoros could be a lesson for those who want to cut down the cloud forest on Mount Sutro and elsewhere in the Bay Area. Disrupting the rainfall cycle could make our drought even more extreme.

Sutro forest on a typical summer day. Courtesy Save Sutro Forest.

Icelanders appreciate their trees because they have few of them.  Iceland was heavily forested, mostly with birch trees, when the Vikings arrived in the 9th century.  Within 100 years, settlers cut down 97% of original forests to build housing and make way for grazing pastures.  Now only 0.5% of the Iceland’s surface is forested, despite extensive reforestation efforts since the 1950s.  Lack of trees means there isn’t vegetation to protect the soil from erosion and to store water, leading to extensive desertification.

Reforestation efforts in Iceland did not attempt to restore native birch forests because they store little carbon and they are not useful for timber.  Seeds of pine and poplar from Alaska were introduced, but growth has been slow because the soil is nitrogen poor and the climate is very cold.  The growth rate is estimated to be only one-tenth of the growth rate of tropical forests in the Amazon.

Both of these examples illustrate that when forests are destroyed, they are not easily replaced.  Much like the historical landscape, we can’t go back.  Nature is dynamic.  It moves forward, not back.

Consequences of deforestation in San Francisco Bay Area

San Francisco has one of the smallest tree canopies—only 14%–of any major city in the Country:

Source:  Data from Urban Forestry Plan, SF Planning Department, 2016. Graphic by San Francisco Forest Alliance

The small urban forest in San Francisco is storing carbon that would otherwise be released into the atmosphere as greenhouse gas, contributing to climate change.  “Carbon sequestration is the process by which atmospheric carbon dioxide is taken up by trees, grasses, and other plants through photosynthesis and stored as carbon in biomass (trunks, branches, foliage, and roots) and soils. The sink of carbon sequestration in forests and wood products helps to offset sources of carbon dioxide to the atmosphere, such as deforestation, forest fires, and fossil fuel emissions.”  (US Forest Service)

Carbon capture by above ground vegetation is proportional to biomass. Because Blue Gum eucalyptus is the largest and most common tree in San Francisco, most carbon storage in San Francisco’s urban forest is in eucalyptus trees, according to an inventory done by the US Forest Service, as illustrated by this graph of the inventory.

Carbon storage by tree species in San Francisco

Source: US Forest Service

All other trees in San Francisco inventoried by US Forest Service are also non-native because there are few native trees in San Francisco.  There are few native trees in San Francisco because they are not well adapted to challenging conditions.  The wind is strong and constant.  The soil is sand, rock, or clay.  It doesn’t rain for 7 months of the year.  The trees that were planted in the San Francisco Bay Area in the 19th century by European settlers were non-native because they were the species that could survive these harsh conditions. 

The non-native trees that are being destroyed by public land managers in the San Francisco Bay Area will not be replaced because the goal of the land managers is to restore grassland that existed prior to the arrival of Europeans at the end of the 18th Century.  All the benefits of trees and forests, including carbon storage will not be replaced.

Forests store more carbon than grassland

Native plant advocates defend the destruction of our urban forest by making the inaccurate claim that grassland stores more carbon than trees.  While it is true that more carbon is stored in the soil than in above-ground vegetation, it does not follow that the soil in grassland contains more carbon than the soil in forests.  The US Department of Agriculture report, “Considering Forest and Grassland Carbon in Land Management” (2017) graphically illustrates that forests in the US store far more carbon per hectare than any other land type and grasslands store the least amount of carbon per hectare of undeveloped land in the Western United States:

The differences in carbon storage per hectare in Western and Eastern United States are caused by differences in climate, soil, and specific vegetation types.  The USDA report also makes these statements about the value of forests for carbon storage:

  • The conversion of forest to non-forest should be avoided to preserve carbon storage, “Because mature forest stands are more likely to be carbon rich from the high volume of tree biomass and recovery takes a long time through afforestation…Further, soil carbon generally declines after deforestation from accelerated decomposition of organic matter such as litter and tree roots.”
  • “Across forest systems, the ‘no harvest’ option commonly produces the highest forest carbon stocks.  Managed stands have lower levels of forest biomass than unmanaged stands…”  In other words, from the standpoint of maximizing carbon storage, leave the forest alone!
  • “Fuel-reduction treatments lower the density of the forest stand, and, therefore, reduce forest carbon.”  Again, the message is leave the forest alone!
  • “…carbon emissions from prescribed fire, the machinery used to conduct treatments, or the production of wood for bioenergy may reduce or negate the carbon benefit associated with fuel treatments…”

Misplaced priorities

I am mystified by the obsession with native plants.  Still, I respect everyone’s horticulture preferences.  If you prefer native plants, by all means, plant them.  We make just one request:  quit destroying everything else because the loss of our urban forest is contributing to climate change and depriving our communities of the many benefits of trees and forests.

Pesticides are the primary tool of the “restoration” industry

Over 20 years ago, my initial reaction to native plant “restorations” was horror at the destruction of healthy trees.  It took some years to understand that pesticides are used by most projects to prevent the trees from resprouting and to control the weeds that thrive in the sun when the trees are destroyed.  Herbicides are a specific type of pesticide, just as insecticides and rodenticides are also pesticides.

Because pesticide application notices are not required by California State law for most of the herbicides used by “restoration” projects, the public is unaware of how much herbicide is needed to eradicate non-native vegetation, the first step in every attempt to establish a native plant garden.  California State law does not require pesticide application notices if the manufacturer of the herbicide claims that their product will dry within 24 hours.

Herbicides used to eradicate non-native plants

In 2014, the California Invasive Plant Council conducted a survey of 100 land managers to determine what methods they use to kill the plants they consider “invasive.”  The result of that survey was a wakeup call to those who visit our parks and open spaces.  62% of land managers reported that they frequently use herbicides to control “invasive” plants.  10% said they always used herbicides.  Only 6% said they never use herbicide.  Round Up (glyphosate) is used by virtually all (99%) of the land managers who use herbicides.  Garlon (triclopyr) is used by 74% of those who use herbicide.

Pesticide use by land managers in California. Source California Invasive Plant Council

Land managers in the Bay Area use several other herbicides in addition to Garlon and Round Up.  Products with the active ingredient imazapyr (such as Polaris) are often used, most notably to kill non-native spartina marsh grass.  Locally, the San Francisco Estuary Invasive Spartina Project (ISP) “defines a need for a zero tolerance threshold on invasive Spartina in the San Francisco Bay.” 2,000 acres have been repeatedly sprayed with herbicides on East and West sides of the San Francisco Bay since the project began.  The result of this project has been bare mud where the imazapyr was aerial sprayed from helicopters the first few years of the project with annual spot spraying continuing 15 years later.  Imazapyr is very mobile and persistent in the soil.  That is the probable reason why attempts to replace the non-native species with the native species were unsuccessful. The loss of both native and non-native marsh grass has eliminated the nesting habitat of the endangered Ridgway rail, decimating the small population of this endangered bird in the Bay Area.

Pesticide Application Notice, Heron’s Head, 2012

Aminopyralid (brand name Milestone) is also used.  Although it is considered less toxic than other herbicides, it is the most mobile and persistent in the soil.  New York State banned the sale of Milestone because of concern about contaminating ground water.

With this knowledge of widespread use of herbicides by land managers, we followed up with specific land managers in the Bay Area to determine the scale of local herbicide use.  East Bay Regional Park District significantly reduced their use of Round Up for facilities maintenance in 2018, in response to the public’s concerns after multi-million dollar product liability settlements of lawsuits from users who were deathly ill after using glyphosate products.  In 2019, the Park District announced that it would phase out the use of Round Up in picnic areas, camp grounds, parking lots, and paved trails.

Source: East Bay Regional Park District

At the same time, the Park District restated its commitment to using herbicide to control plants they consider “invasive.”  Unfortunately, the Park District’s use of herbicide for “resource management projects” has skyrocketed and is by far its greatest use of herbicides.  “Resource management project” is the euphemism the Park District uses for its native plant “restorations” that begin by eradicating non-native vegetation such as spartina marsh grass and 65 other plant species.

These trends in pesticides used by East Bay Regional Park District continued in 2019.  Glyphosate use continued to decline by 82% since reduction strategies began in 2016.  Use of Garlon (active ingredient triclopyr) to control resprouts of non-native trees and shrubs increased 23% since 2017.  Use of Polaris (active ingredient imazapyr) to eradicate non-native spartina marsh grass increased 71% since 2017.  “Resource management projects” have been renamed “ecological function.”

San Francisco Recreation and Parks Department (SFRPD) reduced use of herbicide briefly in 2016, after glyphosate was classified as a probable carcinogen.  However, herbicide use has since increased, particularly in the 32 designated “natural areas” where SFRPD is attempting to “restore” native plants by eradicating non-native plants. In 2019, SFRPD applied herbicides 243 times, the most since 2013.  Of these, 144 applications were in the so-called “natural areas” (this includes properties of the Public Utility Commission, San Francisco’s water supplier, managed in the same way; i.e., eradicating plants they don’t like).  Though the “natural areas” are only a quarter of total city park acres in San Francisco, nearly half the herbicides measured by volume of active ingredient were used in those areas.

Data source: San Francisco Recreation and Parks Department. Graphic by San Francisco Forest Alliance

San Francisco’s Parks Department has been using herbicides in these areas for over 20 years.  Plants that are repeatedly sprayed with herbicides eventually develop resistance to the herbicide, just as over use of antibiotics has resulted in many bacteria that are resistant to antibiotics.

Spraying Garlon on Twin Peaks in San Francisco, February 2011

UC Berkeley recently announced a temporary ban on the use of glyphosate on playing fields and similar landscaped areas.  The use of glyphosate to kill non-native plants considered “invasive” was specifically exempted from UC’s temporary ban.

The more pressure the public puts on land managers to restrict the use of herbicides, the more vociferous native plant advocates have become in defense of herbicides.  In October 2017, California Invasive Plant Council published a position statement regarding glyphosate that justified the continued use of glyphosate, despite its classification as a probable human carcinogen by the World Health Organization.

Mounting public pressure to ban the use of glyphosate has also pushed land managers to try newer herbicides as substitutes (e.g., Axxe, Lifeline, Clearcast).  Less is known about these products because less testing has been done on them and we have less experience with them.  It took nearly 40 years to learn how dangerous glyphosate is!

Why are we concerned about herbicides?

The World Health Organization classified glyphosate (the active ingredient in Round Up) as a probable human carcinogen in 2015.  That decision suddenly and radically altered the playing field for the use of glyphosate, which is the most heavily used of all herbicides.

Since that decision was made, many countries have issued outright bans on glyphosate, imposed restrictions on its use or have issued statements of intention to ban or restrict glyphosate-based herbicides. Countless US states and cities have also adopted such restrictions. Locally, the Marin Municipal Water District (MMWD) made a commitment to not using pesticides—including glyphosate—in 2015.  MMWD had stopped using pesticides in 2005 in response to the public’s objections, but engaged in a long process of evaluating the risk of continuing use that resulted in a permanent ban in 2015.

Several jury trials have awarded plaintiffs millions of dollars as compensation for their terminal medical conditions that were successfully attributed to their use of glyphosate products by product liability lawsuits. There are an estimated 125,000 product liability lawsuits in the US against glyphosate awaiting trial. 

In 2020, plaintiffs in a class-action suit against Monsanto alleging that it falsely advertised that the active ingredient in Roundup only affects plants were awarded $39.5 million.  The settlement also requires that the inaccurate claim be removed from the labels of all glyphosate products: “…[plaintiff] says Monsanto falsely claimed through its labeling that glyphosate, the active ingredient in Roundup, targets an enzyme that is only found in plants and would therefore not affect people or pets. According to the suit, that enzyme is in fact found in people and pets and is critical to maintaining the immune system, digestion and brain function.”

It took lawsuits to establish the toxicity of glyphosate because the “studies” that are used to approve the use of pesticides in the US are done by the manufacturers of pesticides.  The studies are manipulated, often with the active participation of government employees who are responsible for regulating dangerous chemicals.  The lawsuits succeeded by revealing the fraudulent studies used to exonerate glyphosate.

What little research is done on the effect of pesticides on wildlife indicates that pesticides are equally toxic to animals.  New research finds that western monarch milkweed habitat contains a “ubiquity of pesticides” that are likely contributing to the decline of the iconic species:  “’We expected to find some pesticides in these plants, but we were rather surprised by the depth and extent of the contamination,’ said Matt Forister, PhD, a butterfly expert, biology professor at the University of Nevada, Reno and co-author of the paper…’From roadsides, from yards, from wildlife refuges, even from plants bought at stores—doesn’t matter from where—it’s all loaded with chemicals. We have previously suggested that pesticides are involved in the decline of low elevation butterflies in California, but the ubiquity and diversity of pesticides we found in these milkweeds was a surprise,’ Dr. Forister said.”

Damage to the environment

In addition to harming humans and other animals, herbicides used by native plant “restorations” are damaging the soil, undoubtedly contributing to the failure to successfully establish native plants. (1)

  • Both glyphosate (Round Up) and triclopyr (Garlon) are known to kill mycorrhizal fungi that live on the roots of plants and trees, facilitating the transfer of moisture and nutrients from the soil to the plants.  The absence of mycorrhizal fungi makes plants more vulnerable to drought because they are less able to obtain the water they need to survive.
  • Glyphosate is known to bind minerals in the soil, making the soil impenetrable to water and plants more vulnerable to drought.
  • Both glyphosate and triclopyr also kill microbes in the soil that contribute to the health of soil by breaking down leaf litter into nutrients that feed plants.
  • Because herbicides are mobile in the soil and the roots of plants and trees are often intertwined, non-target plants are often harmed or killed. 
Pesticides kill the soil food web.

Despite knowing that glyphosate probably causes cancer in humans and that many herbicides cause significant environmental damage, native plant advocates continue to push land managers to use toxic chemicals to kill non-native plants and trees.  They do so because herbicides are the cheapest method of eradicating vegetation.  They do not have the person-power to eradicate all the vegetation that is being killed by herbicides.  Using herbicides enables native plant advocates to claim larger areas of parkland and open space than they would be able to without using herbicides.

(1) Montellano, et.al., “Mind the microbes: below-ground effects of herbicides used for managing invasive plants,” Dispatch, newsletter of California Invasive Plant Council, Winter-Spring 2019-2020.

Conservation Sense and Nonsense

You are receiving this announcement of our changed focus and new name because you are a subscriber to our original Million Trees blog.  This is our revised mission for the Conservation Sense and Nonsense blog:

Conservation Sense and Nonsense began in 2010 as the Million Trees blog to defend urban forests in the San Francisco Bay Area that were being destroyed because they are predominantly non-native.  In renaming the Million Trees blog to Conservation Sense and Nonsense, we shift the focus away from specific projects toward the science that informed our opposition to those projects. 

Many ecological studies have been published in the past 20 years, but most are not readily available to the public and scientists are often talking to one another, not to the general public.  We hope to help you navigate the scientific jargon so that scientific information is more accessible to you.  If this information enables you to evaluate proposed “restoration” projects to decide if you can or cannot support them, so much the better.

Anise Swallowtail butterfly in non-native fennel. Courtesy urbanwildness.org

Since 2010, we have learned more about the ideology of invasion biology that spawned the native plant movement and the “restoration” industry that attempts to eradicate non-native plants and trees, usually using herbicides.  We have read scores of books and studies that find little scientific evidence in support of the hypotheses of invasion biology.  We have studied the dangers of pesticides and the growing body of evidence of the damage they do to the environment and all life. 

Meanwhile, climate change has taken center stage as the environmental issue of our time.  Climate change renders the concept of “native plants” meaningless because when the climate changes, vegetation changes.  The ranges of plants and animals have changed and will continue to change to adapt to the changing climate.  Attempting to freeze the landscape to an arbitrary historical standard is unrealistic because nature is dynamic.  Evolution cannot be stopped, nor should it be.

Destroying healthy trees contributes to climate change by releasing stored carbon into the atmosphere.  Both native and non-native trees store carbon and are therefore equally valuable to combat climate change.  Native vegetation is not inherently less flammable than non-native vegetation.  There are advantages and disadvantages to both native and non-native vegetation. 

The forests of the Earth are storing much of the carbon that is the primary source of greenhouse gases causing climate change.  Deforestation is therefore contributing to climate change.  By destroying healthy trees, the native plant movement is damaging the environment and its inhabitants.

Housekeeping

All of the articles on the Million Trees blog are still available in the archive on the home page.  The search box on the home page will take you to specific subjects of interest.  Visit the pages listed in the sidebar of the new home page for discussion of each of the main topics by clicking on the links above.  Readers who subscribed to the Million Trees blog will receive new articles posted to Conservation Sense and Nonsense unless they unsubscribe.  Thank you for your readership.  Your comments are welcome and will be posted unless they are abusive or repetitive. 

Forest Action Brigade: “Oakland’s Vegetation Management Plan is significantly improved”

The City of Oakland began the process of developing a Vegetation Management Plan (VMP) over three years ago.  The purpose of the VMP is “to evaluate the specific wildfire hazard factors in the Plan Area [2,000 acres of city-owned parks and open space and 300 miles of roadsides] and provide a framework for managing vegetative fuel loads…such that wildfire hazard is reduced and negative environmental effects resulting from vegetation management activities are avoided or minimized.” (revised VMP, page 3)

The first draft of the VMP was published in June 2018.  There were significant issues with the first draft that were described by Million Trees HERE.

The VMP was revised and published on November 1, 2019.  It is available HERE.  Written comments can be submitted until December 12, 2019. Scoping comments may be submitted by email (arobinsonpinon@oaklandca.gov) or by mail to Angela Robinson Piñon, 250 Frank H. Ogawa Plaza, Suite 4314, Oakland California 94612.  “Scoping” is the first step in the process of preparing an Environmental Impact Report (EIR). The purpose of scoping is to identify the issues that must be evaluated by the EIR.

The Forest Action Brigade accepts the revised VMP because fire hazards are real and compromise is needed to address them.  Public comments submitted by the Forest Action Brigade regarding scoping for the EIR explain our reasoning. See below. We believe the revised VMP will reduce fire hazards in Oakland without destroying more trees than necessary and limiting herbicide use primarily to preventing trees from resprouting after they are removed.  It is counterproductive to destroy more trees than necessary because climate change has made wildfires more frequent and destructive and carbon sequestered by mature trees is one of the most effective means of reducing greenhouse gas emissions causing climate change.

TO: Angela Robinson Pinon, Oakland Fire Department
arobinsonpinon@oaklandca.gov
FROM: Forest Action Brigade
RE: Oakland’s Vegetation Management Plan, Scoping Comments for EIR

The revised Vegetation Management Plan is a significant improvement over the first draft.  We accept the revised Vegetation Management Plan for the City of Oakland because:

  • Standards for creating and maintaining defensible space around structures, along roadsides, and on ridgelines are reasonable and consistent with both fire science and State law.
  • Forests will be thinned, but “broad based tree removal is not proposed.” Mature trees will be retained, which reduces carbon loss.  Fire ladders to tree canopies will be eliminated.
  • Forest canopy will be retained so the forest floor is shaded and growth of flammable understory grasses and shrubs is suppressed. Density of the canopy will be reduced, but the canopy will be intact.
  • Herbicide will be used to prevent resprouts of trees that are removed, but foliar spraying will be “minimized.” The VMP acknowledges that vegetation killed by foliar spraying is left in place and becomes dry, easily ignited fuel.
  • Best Management Practices for herbicide use require that all applications be done by certified applicators and requests for herbicide application be approved by a licensed pest control advisor.
  • The revised VMP acknowledges that the flammability of plants and trees is unrelated to the nativity of the species. The VMP classifies some species of both native and non-native plants and trees as “pyrophytic.” Non-native plants are not inherently more flammability than native plants.  Flammability is related to the physical and chemical characteristics of plants, not their nativity.
  • The VMP clearly states that the implementation of the VMP is the responsibility of the Oakland Fire Department. OFD is not obligated to respond to the wishes of advocacy organizations unless their proposals are consistent with fire hazard mitigation.

The revised VMP will reduce fuel loads and risk of ignition.  The revised VMP is a fire hazard reduction project with one exception:  the VMP continues to propose the destruction of individual non-native trees within stands of native trees.    However, that proposal is ranked as Priority 3 and is therefore unlikely to be funded. Oakland’s Tree Services Division is inadequately funded and severely understaffed.  Tree Services does not have the resources to remove trees unless they are dead or pose a hazard to the public.  Neither Tree Services nor this VMP is responsible for landscape type conversion: “This VMP does not propose vegetation type conversion as an end goal or strategy…” (Page 1)  Moreover, such unnecessary removal of mature trees damages the surrounding environment, especially in riparian areas, and increases carbon loss, contributing to climate change.

If the VMP is ultimately funded by renewal of the parcel tax for fuels management, revenues should not be used to hire contractors to destroy individual non-native trees within stands of native trees because that would not reduce fire hazards.  The previous parcel tax was cancelled by voters partly because it was misused to fund native plant projects that conflict with fire hazard mitigation.  When native plant advocates plant rare, protected plants in Oakland’s parks and open spaces (which they do), they then oppose fuels management that threatens the plants they prefer.  It is not possible to mow a meadow of grass to prevent ignition without simultaneously destroying individual plants in that meadow.  We saw that principle at work at the public hearing by the Planning Commission on November 20, 2019.  The parcel tax that we would vote for would explicitly prohibit the use of the revenue for vegetation type conversion that is incompatible with fire hazard mitigation.

Scoping Issues

These issues must be addressed by the Environmental Impact Report for the revised VMP, as required by CEQA State law:

  • Carbon loss resulting from tree removals must be estimated. Mitigation for carbon loss must be proposed or negative environmental impact must be acknowledged and estimated. Carbon loss contributes to climate change and climate change is making wildfires more frequent and intense.  Therefore carbon loss increases wildfire hazards and must be estimated by the EIR for this project.
  • The EIR must identify the herbicides and estimate the quantities that will be used to implement the VMP. The amount and impact of pesticides to be used in the VMP should be compared with Oakland’s current levels of herbicide use in the city, including roadside applications. Known hazards of the herbicides that will be used should be acknowledged by the EIR, such as collateral damage to non-target trees and vegetation, damage to the soil, risks to wildlife and human health, mobility and persistence in the environment, etc.  The EIR should mitigate for the increased herbicide use by providing mechanisms for accountability to the public, such as a yearly publicly accessible report on pesticides used in this project, including brand names, location, date, method of application, and quantities. Prohibition of herbicide applications by “volunteers” who are not employees or contractors of the City of Oakland should also be added to Best Management Practices to prevent unauthorized herbicide applications in Oakland.
  • CEQA requires that alternative plans must be considered by an EIR. Typically, “no project” is one of the alternatives.  A third alternative should be less destructive, not more destructive than the proposed project.  For example, an alternative to destroying only non-native trees, as proposed by the VMP, would be to destroy bay laurels that are also a pyrophytic species, as well as vectors for Sudden Oak Death that has killed 50 million oaks in California since 1995.  In 2019, the rate of SOD infection increased from 1% to 12% in one year in sampled trees between Richmond and San Leandro.   Source:  https://www.sfchronicle.com/environment/article/Sudden-oak-death-spreading-fast-California-s-14815683.php?cmpid=gsa-sfgate-result

There are several advantages to thinning bays and Monterey pines rather than eucalyptus:

  • Every dead oak becomes fuel. Therefore, reducing SOD infections prevents oaks from becoming fuel.
  • Bays branch to the ground, providing fuel ladders that are difficult to eliminate because the tree trunk often sprawls on the ground.
  • Removing bays instead of eucalyptus also reduces carbon loss because bays are smaller trees and they have shorter lives than eucalyptus trees, which are expected to live another 200-300 years in the Bay Area based on their longevity in their native range.
  • Monterey pine has a shorter lifespan than eucalyptus and it is a soft-wood tree. Therefore, removal of Monterey pine will result is less carbon loss than destruction of eucalyptus. Furthermore, Monterey pines do not resprout after destruction.  Therefore, they will not require herbicide treatment to prevent resprouts as eucalyptus does.  Many Monterey pines in the East Bay are nearing the end of their lives because of when they were planted as well as pine pitch canker infection.
  • “We ask that a 4th alternative be considered by the EIR.  A “no pesticides” alternative would acknowledge the public’s concerns about the potential for increased pesticide use in Oakland that could be enabled by the completion of the EIR.  That alternative must propose a method of preventing tree resprouts without using herbicides.  There are precedents for such methods.  East Bay Municipal Utilities District does not use herbicides to prevent resprouts.  UCSF does not use any pesticides in the Sutro Forest where thousands of trees have been destroyed and thousands more will be destroyed in the future.”  Addendum 12/2/19
  • CEQA requires that cumulative impacts of similar projects be identified by the EIR. Fuels management projects similar to the VMP are being implemented all over the East Bay. Tree removals by PG&E should be included. The cumulative impact of all fuels management projects in the East Bay must be acknowledged by the EIR.

We hope the revised VMP will survive the public process required to bring it to fruition because we believe it will reduce fire hazards in its present form.  We believe that fire hazards are real and that compromise is needed to address them.  We congratulate the consultants who prepared the VMP and OFD for shepherding it to completion. Those who were involved in its preparation listened patiently and were responsive to the public’s concerns.  We are grateful.

Forest Action Brigade

Tilden Park, October 2016. East Bay Regional Park District has thinned this area to distances of 25 feet between remaining trees. The forest floor is still shaded because the canopy is intact.

Study design determines study findings

Million Trees can never resist a response to misinformation we find in Jake Sigg’s Nature News. (In this case, the statement originates with one of Jake’s readers, not Jake himself.)

“This study takes some of the life out of Art Shapiro’s ecological fitting theory:  Non‐native plants supported significantly fewer caterpillars of significantly fewer specialist and generalist species even when the non‐natives were close relatives of native host plants.”  “Non-native plants reduce abundance, richness, and host specialization in lepidopteran communities” by Karin Burghardt, Doug Tallamy, et, al. (Ecosphere, November 2010).

We’ll get to the study later, but first let’s address the statement about ecological fitting.  Ecological fitting is more accurately described as an observation, rather than a theory or hypothesis and it does not originate with Art Shapiro.  The first observation of ecological fitting was recorded by Dan Janzen in 1980 and described by other ecologists as “the process whereby organisms colonize and persist in novel environments, use novel resources or form novel associations with other species as a result of the suites of traits that they carry at the time they encounter the novel condition.” (1) Ecological fitting is an alternative to the view that relationships between plants and insects and parasites and hosts are the result of co-evolution.  It is consistent with the observation that adaptation to new arrivals in an ecosystem often occurs without evolutionary change and can occur more rapidly than co-evolution would require.

The Colorado potato beetle readily devours an introduced relative of its Solanum hosts as a result of ecological fitting.  (Hsiao, T. H. (1978). “Host plant adaptations among geographic populations of the Colorado potato beetle”. Entomologia Experimentalis et Applicata. 24 (3)) USDA photo

Ecological Laboratory Science

The Burghardt/Tallamy study is a laboratory experiment in the sense that it creates an artificial environment by planting a garden in which it chooses the plant species and then inventories the insect visitors to the garden.  In one garden, native plant species were paired with a closely related species of non-native plant in the same genus (called congeners).  In another, distant garden, native plant species were paired with unrelated species of non-native plants.  The insect visitors that were counted are specifically the larvae stages (caterpillars) of lepidoptera (moths and butterflies).  The adult stage of the caterpillars (moths and butterflies) were not inventoried, nor were members of the other 28 insect orders.

Source: handsontheland.org

The study considers caterpillars “specialists” if they feed on three or fewer plant families.  The authors make this determination based on scientific literature and on observations of their artificially created garden.  Using scientific literature, 30% of visiting caterpillar species to the experimental garden were specialists.  Using actual visits to their experimental garden, 64% of visiting caterpillars were specialists.  The difference is as we should expect because the scientific literature is based on the behavior of caterpillars in the field, but the study confines the choices of the caterpillars to a few specific plant species chosen by the authors of the study.  In other words, caterpillars in the experimental garden had fewer choices of plant species.

The inventory of caterpillars was conducted over two summer months in 2008 and three summer months in 2009.  Findings were very different in the two years of the study:  “We found no difference between the total Lepidoptera larvae supported by native plants and their non-native congeners in 2008, but found over three fold more larvae on natives in 2009.  In 2008 there was no difference in the abundance of generalists on native and non-native congeners, but natives supported more than twice as many generalists as non-natives in 2009.” (2) Similar results were reported for species richness (number of different larvae species).  When paired with unrelated non-native plants, caterpillars showed a significant preference for native plant species, as we should expect because the plants were not chemically similar.

Caterpillar of Anise swallowtail butterfly on its host plant, non-native fennel. Berkeley, California

Although on average, native species attracted more caterpillars than the non-native congener with which they were paired, the strength of that difference varied significantly.  One matched pair attracted eight times as many caterpillars to the native plant compared to the non-native plant.  Another matched pair attracted slightly more caterpillars to the non-native plant compared to the native plant.  

The study authors interpret the significant differences between findings in the first and second years as an indication that caterpillars accumulated more rapidly on native plants than on non-native plants.  They speculate that a longer study would have found even greater preferences for native plants compared to non-native congeners.  Given that adaptation to introduced species occurs over time that is a counter-intuitive prediction.  In fact, many studies find that insects have made a successful transition from native to non-native hosts within a few generations.

Limitations of laboratory studies

The Burghardt/Tallamy study is often cited by native plant advocates in support of their belief that insects require native plants for survival.  This generalization is not supported by the results of the Burghardt/Tallamy study because:

  • The study results are not relevant to all insects.  The findings apply only to the larvae stages of moths and caterpillars.  The adult stages of moths and butterflies also require nectar and pollen from a much broader range of plants than their host plant, where the adult lays its eggs and caterpillars feed before becoming flying adults.  At the adult stage of their lives, they become pollinators.  Studies of the preferences of pollinators consistently find that a diverse garden that prolongs the blooming period is most useful to them. 
  • The study does not support the claim that caterpillars consistently choose native plants in preference to closely related non-native plants over time.  In fact, other studies find such preferences fade over longer periods of time.
  • Statements made by native plant advocates about the degree to which caterpillars are “specialized” are often exaggerated.  When a diverse landscape is available to caterpillars, scientific literature reports that specialization to a few plant families is found in only 30% of the 72 caterpillar species identified by this study. 
  • The Burghardt/Tallamy study was conducted on the East Coast where the climate is different than California.  It snows in the winter and it rains during the summer, unlike most of California.  Our native plants are therefore different from natives on the East Coast.  The Burghardt/Tallamy study was conducted in the summer months from June to August.  Native plants in California are no longer blooming and many are dormant during summer months unless they are irrigated.  The findings of the Burghardt/Tallamy study are therefore not applicable to California unless they can be replicated here.
This is the Serpentine Prairie in Oakland. It is one of the native plant “restorations” done by East Bay Regional Park District. About 500 trees (including native oaks) were destroyed to return the prairie to native grassland. This is what it looks like in June.

Comparison of laboratory with field studies

The Burghardt/Tallamy study does not contradict the findings of Professor Art Shapiro because Professor Shapiro is studying butterflies (not moths) in “natural areas” that have not been artificially created by choosing a limited number of plant species.  In other words, the adult and larvae stages of butterflies that Professor Shapiro studies have more options, and when they do they are as likely to choose a non-native plant as a native plant for both host plant and food plant.  You might say, Professor Shapiro’s study occurs in the “real world” and the Burghardt/Tallamy study occurs in an artificially created world. 

Anise Swallowtail butterfly in non-native fennel. Courtesy urbanwildness.org

The credibility and relevance of Professor Shapiro’s studies are also based on 47 years of visiting his research plots at least 250 days per year, that is, year around.  During that period of time, he recorded his observations and they were statistically analyzed for the study he published in 2003. (3)  His study is of particular interest as the climate changes rapidly because the length of the study also enables us to observe the impact of climate change on our butterfly population in the Bay Area.  In contrast the Burghardt/Tallamy study was conducted in a total of 5 months over a total of two years.  Population trends cannot be determined from such a short study.

Burghardt/Tallamy study is consistent with mission of Million Trees

The Burghardt/Tallamy study does not contradict anything Million Trees advocates for.  Decisions to plant a particular species and the decision to eradicate a particular species are entirely different.  Gardeners should plant whatever they prefer, in my opinion.  When planting decisions are made for public land, I prefer that plants be capable of surviving current local and climate conditions.  When my tax dollars are being spent, I prefer that they not be wasted. Besides, I hate watching plants and trees die in the parks I visit.

This study is consistent with my view that non-native plants don’t threaten the survival of insects unless they replace native plants that insects prefer.  The Burghardt/Tallamy study quite rightly does not say that they do.  Local experience in the Bay Area informs me that they rarely do.  To the extent that they have replaced native plants, they are better adapted to current conditions in a specific location.  Eradicating them rarely results in native plants successfully replacing them.  As the climate continues to rapidly change, the failure of native plant “restorations” is inevitable because vegetation changes when the climate changes.

Site 29 on Claremont Blvd in Oakland is one of the places where UC Berkeley destroyed about 19,000 trees about 14 years ago. Non-native weeds thrive in the sun where trees were destroyed. Poison hemlock and thistle are 8 feet tall where not sprayed with herbicide. Site 29, May 2016.

The Burghardt/Tallamy study does not justify eradication of non-native plants because it does not take into account the damage done by the methods used to eradicate non-native plants.  Since most eradication projects use herbicides, we speculate that more harm is done to insects by herbicides than by the existence of non-native plants.

The decision to eradicate non-native plants must also take into consideration whatever benefit the plants may provide, such as food for wildlife.  For example, even if a plant species isn’t a host plant, it might be a food plant. Butterfly bush (Buddleia) is an example of a plant that is very useful to pollinators, including butterflies, but native plant activists advocate for its eradication. 

Monarch nectaring on butterfly bush. butterflybush.com

Many thanks to Jake Sigg for creating this opportunity for dialogue with native plant advocates.  I am grateful for the window into the community of native plant advocates that Jake’s Nature News provides.

  1. Agosta, Salvatore J.; Jeffrey A. Klemens (2008). “Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution”. Ecology Letters11 (11): 1123–1134. 
  2. “Non-native plants reduce abundance, richness, and host specialization in lepidopteran communities” by Karin Burghardt, Doug Tallamy, et, al. (Ecosphere, November 2010).
  3. SD Graves and AM Shapiro, “Exotics as host plants of the California butterfly fauna,” Biological Conservation, 110 (2003) 413-433

Eradicating non-native plants does NOT benefit insects

We briefly reactivate the Million Trees blog to publish an interesting and important debate between Jake Sigg and Professor Art Shapiro about the relationship between insects and native plants.  Their debate was initiated by this statement published in Jake Sigg’s Nature News on April 26, 2019:

“Did you know that 90 percent of insects can only eat the native plant species with which they’ve co-evolved?”

Jake Sigg has been the acknowledged leader of the native plant movement in the San Francisco Bay Area for 30 years.  He is a retired gardener for the Recreation and Parks Department in San Francisco. Art Shapiro is Distinguished Professor of Ecology and Evolution at UC Davis.  He has studied the butterflies of Central California for 50 years. 

Jake and Art are both passionately committed to the preservation of nature, but their divergent viewpoints reflect their different experiences.  Jake’s viewpoint is based on his personal interpretation of his observations.  As a gardener, his top priority is the preservation of plants rather than the animals that need plants.  As a scientist, Art’s viewpoint is based on empirical data, in particular, his records of plant and butterfly interactions over a period of 47 years as he walked his research transects about 250 days per year. The survival of butterflies is Art’s top priority.

Although their discussion is informative, it does not resolve the questions it raises because Jake and Art “agree to disagree.”  Therefore, Million Trees will step into the vacuum their discussion creates to state definitively that it is patently false to say that “90% of insects can only eat native plants.” That statement grossly exaggerates the degree of specialization of insects and underestimates the speed of adaptation and evolution.

There are several reasons why insects do not benefit from the eradication of non-native plants:

  • Insects use both native and non-native plants.
  • Pesticides used to eradicate non-native plants are harmful to both plants and insects as well as the entire environment.
  • There is no evidence that insects are being harmed by the existence of non-native plants.

Insects use both native and non-native plants

This statement was recently made in an article published by Bay Nature magazine about Jake Sigg:  “More than 90 percent of all insects sampled associate with just one or two plant families.”  (7,500 insect species were sampled by the cited study.  There are millions of insect species and their food preferences are largely unknown.)  This exaggerated description of specialization of insects seems the likely origin of the subsequent, inappropriate extrapolation to the statement that specialized insects require native plants.

Anise Swallowtail butterfly in non-native fennel. Courtesy urbanwildness.org

There are over 600 plant families and thousands of plant species within those families.  Most plant families include both native and non-native plant species.  An insect that uses one or two plant families, is therefore capable of using both native and non-native plant species.

We will use the Oxalidaceae plant family to illustrate that insects can and do use both native and non-native plants.  Oxalidaceae is a small family of about 5 genera and 600 plant species.  We choose that family as an example because Jake Sigg’s highest priority for eradication is a member of that plant family, Oxalis pes-caprae (Bermuda buttercup is the usual common name)In a recent Nature News (April 9, 2019), Jake explained why:  Oxalis is not just another weed; this bugger has a great impact on the present and it will determine the future of the landscapes it invades.” 

Five members of the Oxalis genus in the Oxalidaceae family are California natives. An insect that uses native oxalis can probably also use the hated Bermuda buttercup oxalis because they are chemically similar. 

Honeybee on oxalis flower, another non-native plant being eradicated with herbicide.

The consequences of eradicating non-native plants

Partly because of Jake’s commitment to eradicating non-native oxalis, San Francisco’s Recreation and Parks Department has been spraying it with herbicide for 20 years Garlon (triclopyr) is the herbicide that is used for that purpose because it is a selective herbicide that does not kill grasses in which oxalis usually grows.  Garlon is one of the most toxic herbicides available on the market.  More is known about Round Up (glyphosate) because it is the most widely used of all herbicides.  However, according to a survey of land managers conducted by California Invasive Plant Council in 2014, Garlon is the second-most commonly used herbicide to eradicate non-native plants. 

Garlon is toxic to bees, birds, and fish.  It is an endocrine-disrupter that poses reproductive and developmental risks to female applicators.  It damages the soil by killing mycorrhizal fungi that are essential to plant health by facilitating the transfer of nutrients and moisture from the soil to plant roots. 

A recent article in the quarterly newsletter of Beyond Pesticides explains that insecticides are not the only killers of insects: “Insecticides kill insects, often indiscriminately and with devastating consequences for biodiversity, ecosystem stability, and critical ecosystem services. Herbicides and chemical fertilizers extinguish invaluable habitat and forage critical to insect survival. Taken together, insecticides, fungicides, herbicides and chemical fertilizers make large and growing swaths of land unlivable for vast numbers of insect species and the plants and animals they sustain.” The loss of insects where herbicides are used to kill non-native plants are undoubtedly contributing to the failure of attempts to “restore” native plants which require pollinators and insect predator control as much as non-native plants.

In other words, eradicating non-native oxalis is damaging the environment and the animals that live in the environment.  Furthermore, after twenty years of trying to eradicate it, Jake Sigg admits that there is more of it now than there was when this crusade began:  “Maybe you’ve noticed that there’s more and more of it every year, and fewer and fewer other plants.  That is unlikely to reverse.”  (Nature News, April 9, 2019).

coyote in oxalis field. Copyright Janet Kessler

In fact, local failure of eradication efforts mirrors global failures of similar attempts:  “…despite international policies aimed at mitigating biological invasions, the implementation of national- and regional-scale measures to prevent or control alien species has done little to slow the increase in extent of invasions and the magnitude of impacts.” (1)

Update:  The California Invasive Plant Council has published “Land Manager’s Guide to Developing an Invasive Plant Management Plan.”  It says very little about the disadvantages of using herbicides to eradicate plants they consider “invasive” other than a vague reference to “unintended consequences,” without discussion of what they are or how to avoid them. 

However, it does give us another clue about why eradication efforts are often unsuccessful. When herbicides are used repeatedly, as they have been in the past 20 years, weeds develop resistance to them:   “The International Survey of Herbicide Resistant Weeds (2018) reports there are currently 496 unique cases (species x site of action) of herbicide-resistant weeds globally, with 255 species…Further, weeds have evolved resistance to 23 of the 26 known herbicide sites of action and to 163 different herbicides.”  The Guide therefore recommends that land managers rotate herbicides so that the “invasive” plants do not develop resistance to any particular herbicide.  The Guide gives only generic advice to use “herbicide X” initially and “herbicide Y or Z” for subsequent applications.

In other words, the California Invasive Plant Council continues to promote the use of herbicides to kill plants they consider “invasive.”  They give advice about ensuring the effectiveness of herbicides, but they do not give advice about how to avoid damaging the soil, killing insects, and harming the health of the public and the workers who apply the herbicides. 

Do insects benefit from eradicating non-native plants?

There is no question that insects are essential members of every ecosystem.  They are the primary food of birds and other members of wildland communities.  They perform many vital functions in the environment, such as consuming much of our waste that would otherwise accumulate. 

The Economist magazine has reported the considerable evidence of declining populations of insects in many places all over the world.  (However, the Economist points out that the evidence does not include large regions where insect populations have not been studied. The Economist is therefore unwilling to conclude that the “insect apocalypse” is a global phenomenon.) The report includes the meta-analysis of 73 individual studies that describe declines of 50% and more over decades. The meta-analysis concluded that there are four primary reasons for those declines, in order of their importance:  habitat loss, intensive farming, pesticide use, and spread of diseases and parasites.  The existence of non-native plants is conspicuously absent from this list of threats to insect populations.

In other words, although the preservation of insects is extremely important, there is no evidence that the eradication of non-native plants would benefit insects.  In fact, eradication efforts are detrimental to insects because of the toxic chemicals that are used and the loss of the food the plants are providing to insects.

Jake Sigg and Art Shapiro discuss insects and native plants

The discussion begins on April 26, 2019, with this statement published in Jake’s Nature News:

“Did you know that 90 percent of insects can only eat the native plant species with which they’ve co-evolved?”

On April 26, 2019, Arthur Shapiro wrote:

“No, I didn’t know 90% of insects can only eat the native plants with which they’ve co-evolved. I’ve only been studying insect-plant relationships and teaching about them for 50 years and that’s news to me, especially since on a global basis we don’t know what the vast majority of insects species eat, period! That’s even true for butterflies and moths, which are probably the best-studied group. And it’s even true here in California, one of the best-studied places on the planet (though way behind the U.K. and Japan). Where on earth did that bit of non-information come from?”

Jake Sigg responds:

“Art, I did my best to run down source for that statement.  As I suspected, it may lack academic precision.  That kind of precision is hard come by, and what exists is not entirely relevant.  Most of the information comes from Doug Tallamy.  But the statement is not accurate; it should have read “…90 percent of plant-eating insects eat only the native plants they evolved with”.  Whether that is true or not I don’t know, but it accords with my understanding and I am willing to go along with it, even if proof is lacking.  If you wait for scientific proof on everything you may wait a long time and lose a lot of biodiversity.  I have had too much field experience to think that exotic plants can provide the sustenance that natives do.

I expect you will be unhappy with this response.”

On May 2, 2019, Art Shapiro replies:

“If Tallamy said “90% of the plant-eating insects that I have studied…”  or “90% of the plant-eating insects that have been studied in Delaware…” or some such formulation I might take him more seriously. The phenomenon of “ecological fitting,” as described by Dan Janzen, is widespread if not ubiquitous. “Ecological fitting” occurs when two species with no history of coevolution or even sympatry (co-occurrence) are thrown together and “click.”  A.J.Thorsteinson summed up some 60 years ago what is needed for an insect to switch onto a new host plant: the new plant must be nutritionally adequate, possess the requisite chemical signals to trigger egg-laying and feeding, not possess any repellents or antifeedants and not be toxic. That set of circumstances is met very frequently. To those of us who study it, it seems to happen every other Tuesday.  As we showed, the urban-suburban California butterfly fauna is now overwhelmingly dependent on non-native plants. The weedy mallows (Malva) and annual vetches (Vicia) are fed upon by multiple native butterfly species and are overall the most important butterfly hosts in urban lowland California. . Within the past decade, our Variable Checkerspot has begun breeding spontaneously and successfully on Butterfly Bush (Buddleia davidii). The chemical bridge allowing this is iridoid glycosides. When I was still back East I published that the Wild Indigo Dusky Wing skipper, Erynnis baptisiae, had switched onto the naturalized European crown vetch (Coronilla varia) which had converted it from a scarce and local pine-barrens endemic to a widespread and common species breeding on freeway embankments. And the hitherto obscure skipper Poanes viator, the Broad-Winged Skipper, went from being a rare and local wetland species best collected from a boat to becoming the most abundant early-summer butterfly in the New York metropolitan area by switching from emergent aquatic grasses and sedges to the naturalized Mesopotamian strain of Common Reed, Phragmites australis. I can go on, and on, and on. If you find a sponsor for me to give a lecture about this in the Bay Area, I’ll gladly do it. If you promise to come!

I won’t snow you under with pdfs. Here’s just one, a serendipitous one that resulted from my walking near Ohlone Park in Berkeley. And one from the high Andes in Argentina. That paper cites one of mine in Spanish demonstrating that the southernmost butterfly fauna in the world, in Tierra del Fuego and on the mainland shore of the Straits of Magellan, is breeding successfully on exotic weeds.-! Copy on request.”

On May 2, 2019, Jake Sigg published his last reply:

“I believe many of your statements, Art, and many of these cases I am familiar with.  A conspicuous local example is the native Anise Swallowtail butterfly that still lays eggs on native members of the Umbelliferae, the parsley family, but which also breeds on the exotic fennel, which is an extremely aggressive weed that in only a few years can transform a healthy and diverse grassland supporting much wildlife into a plant monoculture—that, btw, won’t even support the butterfly, which shuns laying eggs where its larval food plant is too numerous and easy target for a predator, like yellow jackets.

What puzzles me is why you can keep your equanimity at the prospect of losing acres of very diverse habitat to a monoculture of fennel.  You live in the heart of the world’s breadbasket where for hundreds of miles both north and south there are almost no native plants except those planted by humans.  That would tend to distort one’s view.  I don’t mean to be flip, but it is not normal for even an academic to be indifferent about a loss of this magnitude.  I have worked hands-on on the land (I was raised on a ranch) all my life and still work every Wednesday maintaining our natural habitat in San Francisco—a task that hundreds of citizens pitch in on because they value the quality and diversity of the areas.  And why do you remain indifferent, are you just a contrarian?  You cite examples to bolster your view, but the examples are too small a percentage to be meaningful and wouldn’t stand up against a representative presentation.

I got my view from life.  I type this in my second-floor sunroom, which looks into a coast live oak growing from an acorn I planted in the late 1960s, about 50 years ago and which is immediately on the other side of the window.  It is alive with birds of many different species—flocks of bushtits, chickadees, juncos every day (plus individuals of other species), which species-number balloons in the migratory season.  What I can’t figure out is how the tree can be so productive as to stand up to this constant raiding.  I will take instances of this sort as my guide rather than the product of academic lucubrations.  And I will throw in Doug Tallamy; the world he portrays is one I recognize and love.

I think our battle lines are drawn.  This discussion could go on, as we have not even scratched the surface of a deep and complex subject.  But will either of us change our minds?  No.”

“Jake Sigg:  N.B.  Art responded with another long epistle, not for posting.  It clarified some of the points that were contentious and seemed to divide us.  We differ, but not as much as would appear from the above discussion.”


(1) “A four-component classification of uncertainties in biological invasions: implications for management,” G. LATOMBE , S. CANAVAN, H. HIRSCH,1 C. HUI, S. KUMSCHICK,1,3 M. M. NSIKANI, L. J. POTGIETER, T. B. ROBINSON, W.-C. SAUL, S. C. TURNER, J. R. U. WILSON,  F. A. YANNELLI, AND D. M. RICHARDSON, Ecosphere, April 2019.

Happy New Year and Farewell

The Million Trees blog is folding its tent and moving on because most of the projects in the San Francisco Bay Area that I have followed for 20 years have been approved, funded, and are being implemented.  Every public land manager in the Bay Area has made a commitment to destroying most non-native trees and using pesticides for that purpose.

If you wish to continue following the development of these projects, I recommend these websites:  San Francisco Forest Alliance Defend East Bay Forests, Save the East Bay Hills, and Hills Conservation Network.

For the record, this is a brief summary of my beliefs about the environment:

If I return to the blogosphere in the future, the title and mission of a new blog would change.  The focus would be the science that informs my commitment to the cosmopolitan landscape that exists, rather than the fantasized landscape of the past.  I will also continue to inform readers of new studies that find evidence of the damage that pesticides do to the environment and its inhabitants.  If you are a subscriber to the Million Trees blog, you will be informed if I publish a new blog.

Thank you for your readership.

Million Trees

Conference of the California Invasive Plant Council: Fallacies and Failures

The California Invasive Plant Council held their 27th annual conference in Monterey in November.  It was their biggest conference, with about 400 attendees and more sponsors than ever before.  Clearly the industry that promotes the eradication of non-native plants is alive and well.  However, a closer look at the conference presentations suggests otherwise.  Eradication efforts are growing, but eradication success is not and establishing a native landscape after eradication is proving elusive.

A few common themes emerged from the presentations:

  • Eradication cannot be accomplished without using pesticides.
  • When eradication is achieved with pesticides, non-natives are rarely replaced by native plants.
  • Planting natives after non-natives are eradicated reduces re-invasion, but secondary invasions of different non-native plants are common.
  • “Managing” forests with prescribed burns did not result in more biodiversity than leaving the forest alone.

Goals of these eradication projects have shifted in response to these failures to achieve original goals:

  • Replacement plantings after eradication are sometimes a mix of natives and non-natives.
  • Inability to establish native grassland has given way to different goals.
  • Language used to describe the projects are evolving to be more appealing to potential volunteers.

Here are a few examples of presentations that illustrate these themes:

Eradicating beach grass in Point Reyes National Seashore

About 60% of sand dunes in the Point Reyes National Seashore were covered in European beach grass when the eradication effort began in 2000.  The goal of the project was to restore native dune plants and increase the population of endangered snowy plovers that nest on bare sand.

The project began by manually pulling beach grass from 30 acres of dunes at Abbott’s Lagoon.  The grass grew back within one year, presumably because the roots of the beach grass are about 10 feet long.  Manually pulling the grass from the surface does not destroy the roots.

A new method was devised that was more successful with respect to eradicating the beach grass.  The grass and its roots were plowed up by bulldozers and buried deep in the sand.  The cost of that method was prohibitively expensive at $25,000 to $30,000 per acre and the barren sand caused other problems.

The barren dunes were mobile in the wind.  Sand blew into adjacent ranches and residential areas, causing neighbors of the park to object to the project.  The sand also encroached into areas where there were native plants, burying them.  The bare sand was eventually colonized by “secondary invaders.”  Different non-native plants replaced the beach grass because they were more competitive than the desired native plants.

In 2011, the National Park Services adopted a third strategy for converting beach grass to native dune plants.  They sprayed the beach grass with a mixture of glyphosate and imazapyr.  At $2,500 to $3,000 per acre, this eradication method was significantly cheaper than the mechanical method.

However, it resulted in different problems that prevented the establishment of native dune plants.  The poisoned thatch of dead beach grass was a physical barrier to successful seed germination and establishment of a new landscape.  Where secondary invaders were capable of penetrating the dead thatch, the resulting vegetation does not resemble native dunes.

Presentation at California Invasive Plant Council conference regarding attempt to eradicate European beach grass at Point Reyes National Seashore

The concluding slides of this presentation were stunning.  They said it is a “Restoration fallacy that killing an invader will result in native vegetation.”  My 20 years of watching these futile efforts confirm this reality.  However, I never expected to hear that said by someone actually engaged in this effort.  The presenter mused that such projects are like Sisyphus trying to roll a boulder up hill. 

Presentation at California Invasive Plant Council conference regarding attempt to eradicate European beach grass at Point Reyes National Seashore

Attempting to plant Douglas fir after eradication of broom

Over a period of 5.5 years, broom was eradicated in plots in Oregon by spraying glyphosate.  The plots were then planted with Douglas fir seedlings that soon died.  They were replanted the following year and died in the second year.

There were two theories about why the plantings failed, both broadly described as “legacy” effects in the soil left by the broom.  One theory is that nitrogen levels were too high for successful growth of Douglas fir.  That theory is consistent with the fact that broom is a nitrogen fixer.  That is, broom—like all legumes—have the ability to transfer nitrogen in the atmosphere to nitrogen in the soil with the help of bacteria that facilitate that transfer.  Nitrogen generally benefits plant growth, but there can also be too much nitrogen.

The second theory is that Douglas fir requires a specific suite of mycorrhizal fungi for successful growth.  Mycorrhizal fungi live in roots of plants and trees.  They transfer moisture and nutrients from the soil to the plants.  Plants with a healthy suite of mycorrhizal fungi are more drought tolerant because they extract more moisture from the soil.

Neither of these theories has been successfully proven by this project.  They remain unanswered questions.  We were struck that the researchers had not considered the possibility that the repeated use of glyphosate could have been a factor in the failure of the Douglas fir.  Glyphosate is known to kill bacteria in the soil.  Could it also kill mycorrhizal fungi?  (We know that triclopyr kills mycorrhizal fungi.) That possibility was not considered by this project. Did the project consider that glyphosate also changes the consistency of the soil by binding certain minerals together?  It is more difficult for roots and water to penetrate the hard soil.  Were soil samples taken before and after repeated applications of glyphosate to determine how the soil had been changed by pesticide applications?

The published abstract for this project made this observation:  “It is typically assumed that once an invasive species is successfully removed, the impact of that species on the community is also eliminated.  However, invasive species may change the environment in ways that persist, as legacy effects, long after the species itself is gone.”  In fact, it seems likely that the pesticides used to eradicate the “invasive” species could also be the source of the “legacy effects.”

Does “managing” a forest result in greater biodiversity in the understory?

California State Parks tested that hypothesis by conducting prescribed burns in some of their forests in the Sierra Nevada 20 years ago, while leaving other portions of the forest “unmanaged.”

The abstract for this presentation describes the goals and expectations for the prescribed burns:  “Prescribed fire is a tool used to reduce fuels in the forests in the Sierra Nevada and mimic the low and moderate severity wildfires that burned before the onset of fire suppression.  A manager’s hope is that prescribed fire will create the disturbance necessary to stimulate the development of species rich understory communities and increase species richness, compared to unburned forests, which are often viewed as species depauperate.”

Twenty years after the burns, abundance and species composition of the understory in the burned areas were compared to the unburned areas.  They found little difference in the biodiversity of the understory of burned areas compared to unmanaged forests:

  • “Species richness was highly variable within burned and passively managed areas but was not statistically different.”
  • “Passively managed areas did not appear to be depauperate in understory species diversity compared to areas managed with prescribed fire.”
  • “Fire did not appear to reduce or enhance species richness numbers in burned areas, as compared to passively managed areas.”

No fires occurred in either the burned areas or the unmanaged areas during the 20-year period.  Therefore, this study did not test the theory that prescribed burning reduces fire hazards in forests.  This study found no significant differences in diversity of forest understory resulting from prescribed burns.

There are significant risks associated with prescribed burns.  They cause air pollution and they frequently escape the controlled perimeter of the fire, becoming wildfires that destroy far more than intended.  This study does not provide evidence that would justify taking those risks.  In fact, available evidence supports the “leave-it-alone” approach to land management.

Moving the goal posts

If at first you don’t succeed, you have the option of redefining success.  Here are a few of the projects presented at the conference that seemed to take that approach.

Make projects so small that success can be achieved

Eric Wrubel introduced himself as the National Park Service staff who is responsible for prioritizing invasive plants for removal in the National Parks in the Bay Area (GGNRA, PRNS, Muir Woods, and Pinnacles).  His work is based on the premise that the most successful eradications are those that are small.  The bigger the infestation, the greater the investment of time and resources it takes to eradicate it and the smaller the likelihood of success.  This is illustrated by a graph showing this inverse relationship between the size of the invasive population and the success of eradication.

Source: Rejmanek and Pitcairn, “When is eradication of an exotic pest plant a realistic goal?,” 2002

The process of prioritizing eradication projects began over 10 years ago with a survey of over 100 species of plants considered invasive.  Cal-IPC’s “watch list” was used to identify the plants that are not yet widely spread in California, but considered a potential problem in the future.  Cal-IPC’s risk assessment was the third element in the analysis.  Plants with “High” risk ratings by Cal-IPC were put higher on the priority list than those with “Moderate” or “Limited” ratings.  Plants that did not exist elsewhere in the region or watershed were also given higher priority, based on the assumption that re-invasion was less likely.

This is the list of eradication projects in the National Parks in the Bay Area that was presented at the conference of the California Invasive Plant Council. The projects marked with the red symbol for crossing out are completed projects. Nearly half of the plants on this hit list are not considered invasive in California.

The priority list showed that the highest priority eradication projects were quite small.  Some were just a few acres.  Buddleia jumped out as the 7th highest priority on only 13 acres.  Buddleia was recently added to a new category of plants on Cal-IPC’s “invasive” inventory.  It is not considered invasive in California, although it is considered invasive elsewhere.

In placing buddleia on its “hit list,” Cal-IPC illustrates one of the fundamental weaknesses of its evaluation method.  Cal-IPC does not evaluate pros and cons of non-native plants.  Only traits considered negative are taken into consideration.

Monarch sanctuary in Monterey, California. November 2018

Buddleia is one of the most useful nectar plants for pollinators in California.  We took the time to visit the monarch butterfly sanctuary in Monterey while attending the conference.  The monarchs are arriving now to begin their winter roost in the eucalyptus, Monterey pine and cypress in this small grove.  At the entrance to the sanctuary a sign instructs visitors to plant only native milkweed as the monarch’s host plant and only native flowers for nectar.  Fortunately whoever planted the flowering shrubs in the sanctuary didn’t follow the advice of the sign-makers.  They planted buddleia and other flowering non-natives such as bottle-brush.  Several species of butterflies and hummingbirds were enjoying those plants in the Sanctuary. Strict adherence to the native plant agenda is not beneficial to wildlife because animals do not share our prejudices.

Monarch nectaring on butterfly bush. butterflybush.com

Acknowledging the difficulties of converting non-native annual grass to native perennial grass

Pinnacles National Park acquired 2000 acres of former ranchland in 2006.  The park wanted to convert the non-native annual grasses and yellow-star thistle on the former ranch to perennial bunch grasses and oak woodland.  They were able to reduce the amount of yellow-star thistle by burning and spraying with herbicide, but cover of native species remained low.  Conversion of grasses from non-native annuals to native perennial grass has been tried many times, in many places, and for long periods of time.  These projects were notoriously unsuccessful.

The project at Pinnacles has changed its goal to plant forbs (herbaceous flower plants) instead of grasses and they report that they are having some success.   They justify that shift in goal on soil analysis that suggests forbs were more prevalent than perennial grasses in inland valleys in California than previously thought.

This change in goal could be described as “adaptive management,” which adjusts methods and goals in response to observable outcomes of existing methods.  You could also call it “trial and error.”  We would like to see more land managers make such adjustments to their strategies, rather than doing the same thing over and over again and expecting a different outcome.

Recruiting volunteers with appealing messages

There were several presentations about effective methods of recruiting volunteers to participate in restoration projects.  Some of their messages seem to acknowledge that the language used in the past may have alienated some potential volunteers.  Speaking from personal experience, I can confirm that observation.  Here are just a few of the cringe-worthy native plant mottos that I hope have been abandoned in favor of a more positive message:

  • “That plant doesn’t belong here.”
  • “That is a good plant and the other is a bad plant.”
  • “The invasive landscape is sick and requires chemotherapy.” (to justify the use of pesticides)
  • “That’s a trash bird.” (said of common, introduced birds, such as starlings and house sparrows)

The speaker advised those who work with volunteers to focus on why an unwanted plant is a problem rather than where it comes from.  Unfortunately, the list of problems is heavily influenced by the preferences of native plant advocates.  If their criticisms are not accurate, or they don’t acknowledge the advantages of the plant, little has been achieved by using euphemisms.  Here are a few of the inaccurate criticisms made of eucalyptus:

What was missing?

Ecological restoration is a major industry. Thousands of people are employed by the industry, which is funded by many different sources of public money.  Whether individual projects are successful or not, the industry will survive and thrive as long as it is funded.  Greater care should be taken to design and implement projects that will be successful.

Stepping back from the conference presentations of specific restoration projects, here are a few issues that were conspicuously absent from the conference. 

  • Pesticides are being widely used by the restoration industry. When projects don’t achieve desired outcomes, pesticides should be considered as a factor.  Did pesticides alter the soil?  Were beneficial microbes and fungi killed? How persistent was the pesticide in the soil?  How mobile was the pesticide in the soil?  Was pesticide applied in the right manner?  Could aerial drift account for death of non-target plants?  There are many other useful questions that could be asked.

Update:  The California Invasive Plant Council has published “Land Manager’s Guide to Developing an Invasive Plant Management Plan.”  It says very little about the disadvantages of using herbicides to eradicate plants they consider “invasive” other than a vague reference to “unintended consequences,” without discussion of what they are or how to avoid them. 

However, it does give us another clue about why eradication efforts are often unsuccessful. When herbicides are used repeatedly, as they have been in the past 20 years, weeds develop resistance to them:   “The International Survey of Herbicide Resistant Weeds (2018) reports there are currently 496 unique cases (species x site of action) of herbicide-resistant weeds globally, with 255 species…Further, weeds have evolved resistance to 23 of the 26 known herbicide sites of action and to 163 different herbicides.”  The Guide therefore recommends that land managers rotate herbicides so that the “invasive” plants do not develop resistance to any particular herbicide.  The Guide gives only generic advice to use “herbicide X” initially and “herbicide Y or Z” for subsequent applications.

In other words, the California Invasive Plant Council continues to promote the use of herbicides to kill plants they consider “invasive.”  They give advice about ensuring the effectiveness of herbicides, but they do not give advice about how to avoid damaging the soil, killing insects, and harming the health of the public and the workers who apply the herbicides.  May 20, 2019

  • Are workers who apply pesticides being adequately trained and supervised by certified applicators? The safety of workers should be one of many goals of restoration projects.
  • When non-native plants are eradicated, serious thought should be given in advance to the probable outcome. Will native plants return?  Will wildlife be harmed?  Will the risks of failure outweigh the potential benefits of success?
  • Is climate change taken into consideration when planning the replacement landscape? Are the plants that grew in the project location 200 years ago still adapted to that location?  Is there enough available water?
  • If new plantings require irrigation to be established, what is the water source? Is it recycled water with high salt content that will kill many plants, including redwoods?
  • Are the new plantings vulnerable to new infectious diseases, such as phytopthera or infestations of new insects such as shot-hole borer?
  • Does the project team have sufficient horticultural knowledge to choose plants that can survive in current conditions? Does the project team know the horticultural needs of the plants they are planting?  Is there enough sunlight, water and wind protection for the trees they are planting?

The public is investing heavily in the “restoration” of ecosystems.  We can only hope that our investment is being used wisely and that projects will not do more harm than good.  Cal-IPC can play a role in raising the questions that have the potential to improve projects and enable them to succeed.  The long-term survival of the “restoration” industry depends on it.


Most quotes are from abstracts of presentations published in the conference program.

Trophic cascades are initiated by pesticide use

Although the Environmental Protection Agency requires that pesticides be tested before they can be sold in the US, we know that the required tests are inadequate to determine if the pesticide is dangerous to human health and the environment.  The tests are only as accurate as the test protocols and procedures.  There are many flaws in the testing methods required by federal law.  Here are a few of them:

  • Tests are conducted on laboratory animals in which the dose is limited to a single chemical. In the real world, humans and other animals are subjected to many chemicals simultaneously in doses that are unknown and unknowable, because little testing is done of contamination in the environment. Only the active ingredient in pesticide is tested, not the formulated product that is a cocktail of many chemicals.
  • Tests are done for relatively short periods of time, compared to the long lives of humans during which chemicals accumulate in our bodies.
  • The chemical threshold deemed “safe” is not the dose at which no adverse effect occurred. It is only the dose at which no adverse effect was observed:  “Subclinical affects—reduced fertility, compromised immune systems, and reduced intelligence, for example—are not observed not because they have not occurred but because they are seldom sought.” (1) In other words, the testing regimen does not test for many potential health problems.
  • The testing regimen is also limited to a few animal species at certain stages of development. For example, bees are the only species of insect on which pesticide tests are required and they are only tested at the adult stage.  Bee keepers will tell you that larvae stages of bee development are far more vulnerable to pesticides than adult bees, yet no tests are required on that stage of development.  Bees are probably less vulnerable to pesticides than caterpillars which eat vegetation, but caterpillars are not tested.  If caterpillars are killed, there are no moths and butterflies.

A proposal for a new testing standard of the impact on the entire ecosystem

Beyond Pesticides has published a review of many scientific studies about the impact of pesticides on the entire ecosystem in which they are applied.  The article reports substantial empirical evidence that pesticides are initiating trophic cascades in the entire ecosystem in which pesticides are used.  The article concludes that such studies of the entire food web are needed to identify and prevent such damage. (2)

What is a trophic cascade?

A change in the population of one member of an ecosystem can trigger a trophic cascade by altering the balance of the entire food web. 

The classic example of a “top-down” trophic cascade is the sequence of events in Yellowstone National Park when wolves were exterminated in the park.  In the absence of the top predator in the ecosystem, the population of elk that were their prey exploded.  The grazing animals ate trees and shrubs that were the food of the beavers.  The beaver population declined, which altered the hydrology of the ecosystem.  Wetlands maintained by beaver dams dried up and the community of plants and animals in the wetlands died off.  Although there were other predators of the grazing animals, such as bears and mountain lions, the packs of wolves subjected the herds of grazing animals to harassment that kept them moving, reducing damage to the vegetation.

Wolves have returned to Yellowstone National Park because of the Endangered Species Act that protected them and the ecosystem has been restored by the natural forces of predator and prey relationships.  The endangered status that protected wolves was recently rescinded in response to the demands of ranchers with domesticated animals.  Although wolves may not be killed inside Yellowstone, they may be killed when they leave the park.  We may eventually see a reversal of the improvements in an ecosystem ruled by wolves.


Update:  Emma Marris has critiqued the theory that the absence of wolves in Yellowstone National Park caused a trophic cascade that damaged the entire ecosystem in Yellowstone National Park and the reintroduction of wolves restored the ecosystem.  Her article, entitled “A good story:  Media bias in trophic cascade research in Yellowstone National Park,” was published in Peter Kareiva’s et al. new book, Effective Conservation Science, Data not Dogma.

Marris details the lack of data supporting the existence of a trophic cascade or its reversal when wolves were reintroduced.  She calls those claims speculative, an unproven hypothesis.  More importantly, Marris believes that proof of that hypothesis is unattainable:  “…even ecosystems as well studied as Yellowstone remain beyond our ken…lifetimes will be required to understand them and even then they may always remain, by virtue of changing faster than we are able to follow, essentially unknowable.”

More humility is needed to guide conservation.  If we are to avoid damaging the environment further, we need to keep in mind how little we know.  Nature may be far wiser in managing itself than humans presume to be. 


There are also examples of “bottom-up” trophic cascades when increases or decreases in the abundance of microscopic plants and animals disrupt the entire food web, ultimately impacting the top of the food chain.

Insects are also near the bottom of the food chain.  They are essential food for birds, particularly to young nestlings.  Scientists began noticing that insect populations were disappearing some time ago, but their anecdotal observations were not empirically tested until 2016 when an entomological society in Germany published a study about the decline:  “The German study found that, measured simply by weight, the overall abundance of flying insects in German nature reserves had decreased by 75 percent over just 27 years.” (3)  Although there are undoubtedly many reasons for this rapid disappearance of insects, including pesticides, there is almost no research being done to determine the causes:  “Rob Dunn, an entomologist at North Carolina State University…recently searched for studies showing the effect of pesticide spraying on the quantity of insects living in nearby forests.  He was surprised to find that no such studies existed.  ‘We ignored really basic questions,’ he said.  ‘It feels like we’ve dropped the ball in some giant collective way.’” (3)  Professor Dunn should not feel badly.  Almost no research is being done on the effects of pesticides on anyone, any animal or anything in the environment  Turning a blind eye to the possibility of such harm done by pesticides is one of the ways in which the industry is shielded from regulation.

Trophic cascades caused by pesticides

The review article published by Beyond Pesticides reports that many empirical studies have discovered trophic cascades initiated by pesticide applications.  Here is one example from agriculture:

“Mesleard et al. (2005) found that the insecticide fipronil, used to control midge pests in conventional rice fields, causes a trophic cascade that reduces the nutritional value of the area for waterfowl. Comparing a chemical intensive rice field to one managed organically, the trophic cascade ultimately neutralized the efficacy of synthetic pesticide use in the first place.

“Direct toxicity from fipronil reduced the number of invertebrate predators in chemical-intensive rice fields. This led to a trophic cascade that allowed herbivorous animals to flourish. On the surface, organic and chemically-managed rice fields both contained the same amount of invertebrate biomass. However, in chemical-intensive fields, this biomass was primarily in the form of gastropods (snails and slugs). When researchers surveyed the fields in late summer, only 12% of the invertebrate community were predators, while in organic fields that proportion was 70%. Slugs and snails are not a major food source for the most common waterfowl in the region studied, the heron, making organic plots a more valuable source of sustenance.” (2)

The review article also provides examples of trophic cascades initiated by pesticides in aquatic environments and in “invasive species” control projects.  Both herbicides and insecticides have initiated trophic cascades.  The effect on the food web of one pesticide is sometimes different from another.  The timing of a pesticide application sometimes has different impacts on the food web.  The effects of pesticides vary widely and are very complex.

A local example of a trophic cascade

There are many aquatic weeds in the Delta where the Sacramento and San Joaquin rivers slowly meander into the San Francisco Bay.  The weeds come from warmer climates and they are thriving here because of climate change.  Lower water levels are also a factor because shallower water is warmer.  The water level is lower because of drought and the diversion of water from the rivers and the Delta to irrigate agricultural crops.  Annual spring floods that cleansed the Delta system in the distant past have been stopped by upstream dams that keep water levels constant.

Instead of addressing the underlying reasons why the aquatic weeds have become a problem, the powers that be (State Parks Division of Boating and Waterways and approved by US Fish & Wildlife Service) have been spraying the aquatic weeds with pesticide and dumping pesticide pellets into the water.  These pesticide applications have been steadily increasing:  “Charts provided by the state show a 50 percent hike in the amount of pellets used from 2014 to 2017 and a 66 percent increase in the amount of spray that was administered during the same time period.” 

Fortunately, there are thousands of fishermen in the Delta who have noticed massive die-offs of fish, turtles, goats, ducks, muskrats, and otters since the spring. They have reported these deaths to California State Parks, who deny knowledge of such die-offs.

The fishermen have formed an organization, Norcal Delta Anglers Coalition.  They have organized to document this trophic cascade that was probably initiated by unnecessary pesticide applications.  We wish them luck.  We hope they have more success than we have had convincing public land managers that they are damaging the environment and its inhabitants with pesticides.

Testing and evaluation of pesticides must be improved

This important review article (1) concludes that pesticides can upset and imbalance ecosystem health and stability.  Studies find “increased risk of disease transmission, dangers to declining species, algae blooms, the loss of ecosystem services like nutrient cycling, and importantly, ineffective pest management.”  Therefore, there is a “critical need for EPA to consistently assess ecosystem level trophic effects as part of the pesticide registration process.” In the absence of a truly precautionary system where independent science is adequately considered by regulators, pesticides are likely to cause trophic cascades or other ecosystem disruption.

Such ecosystem evaluations of pesticides are not going to happen in the foreseeable future.  The 180-degree turn in American politics that would be required to improve pesticide regulation is unlikely.  Although most of the meager federal regulation we had in place prior to 2017 has been dismantled, regulation in the prior administration was also inadequate.

Courtesy Beyond Pesticides

Therefore, our fallback position should be DON’T USE ANY MORE PESTICIDE THAN ABSOLUTELY NECESSARY.  Buy organic food to protect your family and to put industrial agriculture using pesticides out of business.  Fight for rigorous pesticide regulation locally, in your city, your county and your state.

The end of another nativist myth

Native plant advocates promote the use of pesticides to eradicate non-native plants.  The myth they use to justify their use of pesticides is that damage is confined to the target plant or animal.  Clearly that is not true. Pesticides can be aimed at a specific plant, but non-target plants are often killed unintentionally because pesticides are mobile in the soil, they drift in the air and they are carried by the roots of the target plant to the intertwined roots of non-target plants.

Furthermore, killing one plant or animal in an ecosystem ultimately effects the entire community of plants and animals.  The collateral damage to the entire ecosystem caused by pesticides can be devastating to the entire food web.  Clearly the word “restoration” is a misnomer when used to describe eradication projects using pesticides.

Given the inevitable damage to entire ecosystems, the claim that native plant “restorations” benefit wildlife is clearly unlikely, if not patently false. 


  1. Joe Thornton, Pandora’s Poison, MIT Press, 2000
  2. Drew Toher, “Pesticide Use Harming Key Species Ripples through the Ecosystem,” Pesticides and You, Summer 2018.
  3. Brooks Jarvis, “The Insect Apocalypse Is Here,” New York Times, November 27, 2018