Environmentalism in the Rear-View Mirror

One year ago, less than a month after Donald Trump was re-elected President, I announced on Conservation Sense and Nonsense my intention to “hunker down and watch the changes [in the federal government] play out.”  Although I predicted major changes in federal public policies, I did not foresee the scale and speed of changes in environmental policies that we have witnessed in the past year.  The uncomfortable reality is that some of what is being destroyed deserved to be destroyed, but at the expense of some valuable environmental protections. 

In describing the changes we have witnessed, I will focus primarily on environmental issues in the following main categories.  Please keep in mind that changes in environmental policies are but a small fraction of the changes that have occurred in all aspects of American life and global geopolitics, e.g., education, public health, arts and entertainment, architecture, science, economics, immigration, media sources, judicial system, disaster relief, social safety net, foreign aid, tariffs, etc. 

The Trump administration has left the international Paris Agreement, the legally binding treaty adopted in 2015 to limit global warming to below 2 degrees Celsius.  The US was not represented at the November 2025 meeting of the UN Conference of the Parties (COP30) to the agreement in Brazil, but the US actively campaigned against the new commitment on the agenda to limit pollution from cargo ships by using fines.  According to the New York Times, “…the United States launched a pressure campaign that officials around the world have called extraordinary, even by the standards of the Trump administration’s combativeness, according to nine diplomats on its receiving end.” US diplomats and officials were successful in threatening countries with loss of US port access and other onerous penalties if they voted for the proposal. The Trump administration hasn’t just dropped out of the Paris Agreement.  It is also actively engaged in preventing other countries from reducing greenhouse gas emissions that cause climate change. COP30 ended without any new commitments to reduce the sources of greenhouse gas emissions, or even explicit mention of fossil fuels as the primary greenhouse gas.   

America Accommodates

Many of these changes have been delayed by legal challenges, but until appeals reach the Supreme Court, the final verdict on most issues is not known at this time.  However, the Supreme Court has signaled their intentions with many emergency orders, also known as the shadow docket.  These decisions have upheld most of the federal government’s actions, without providing any legal reasoning for doing so.  These preliminary decisions foretell the ultimate victory of the actions of the Trump administration.

Other segments of American society are contributing to the control the President has over the implementation of his agenda. At his request, Congress has completely defunded National Public Radio and the Public Broadcasting Service.  They are scrambling to find other sources of revenue, while cutting programs and staff as well as closing stations. Associated Press was banned from White House press briefings when they refused to call the Gulf of Mexico the Gulf of America, as renamed by President Trump. Legal challenges have not restored AP’s access to White House press briefings.

Mainstream media has paid multi-million dollar settlements to resolve defamation lawsuits (ABC and CBS) brought by President Trump over perceived slights.  One major network (CBS) has changed ownership and is now owned by Trump supporters (Larry & David Ellison).  The Department of Defense (now calling itself the Department of War) has restricted access of the press to department staff and now requires department approval of press releases prior to publication.  Most members of the Pentagon press corps refused to agree to these restrictions and have left their offices in the Pentagon.  Self-censorship is a more insidious threat because the public no longer knows when the media is pulling its punches to avoid retribution, which is the President’s modus operandi.

The legal profession has also been brought to its knees by the President’s threats of punishment if they participate in lawsuits that try to prevent the implementation of the administration’s policies.  Many major law practices have been forced to provide pro bono legal services for President Trump after being threatened with access restrictions to the judicial system.  Major law practices are refusing to represent plaintiffs who are trying to protect themselves from government prosecution, hoping to stay out of the line of fire.

California Responds

The same day that Americans re-elected Donald Trump in November 2024, California voters passed Proposition 4, the $10 billion bond that funds climate change mitigation and ecological restoration in California.  California’s bond funding will help to compensate for the loss of federal funding of ecological and climate mitigation projects in California. California Natural Resources Agency reported the cancellation of federal funding for these projects in California:

Source: California Natural Resources Agency, July 2025

Does California have enough money to compensate for the loss of federal funding of climate change mitigation and ecological restoration in California?  I don’t know, but I do know that federal funding is also being lost for many other purposes that are important to Californians, such as subsidies for health insurance and food assistance needed by many Californians.  Some municipalities are responding by raising sales and property taxes to backfill the loss of federal funding in many sectors of the economy.  While federal taxes are being cut, California’s taxes may rise.

Meanwhile, California is challenged by related issues such as the need to build more housing in order to reduce the cost and house our growing homeless population.  In July 2025, California responded to that issue by revising the California Environmental Quality Act (CEQA), which will remove many obstacles to building new housing and allow more aggressive fire hazard mitigation. 

The cost of gas in California has been consistently higher than in most states because of voters’ desire for clean air.  Regulations have made drilling for and refining oil in California costlier than in other states, which makes gas more expensive for consumers.  Refineries have responded to California’s restrictive regulations by leaving the state, which reduces supply, raises prices further and is expected to restrict availability of fuel. California’s Senate Bill 237, signed into law in September 2025, addressed these concerns by streamlining approval of drilling permits, including idle pipelines, in an “environmentally responsible and safe manner.” 

In other words, California has been forced to adapt to new economic and environmental realities. At the same time, California is aggressively fighting back.  As of October 1st, California has filed 46 lawsuits against the 2nd Trump administration, “contesting the Trump administration’s executive orders, agency decisions and even recent laws that Trump himself signed.”

Americans Shrug

Composite opinion polls reported a persistent negative approval rating of 11% for the Trump presidency until the government shutdown in October, when the approval rating dropped to negative 15% before returning to negative 11% when the government re-opened.  Over 40% of American voters still approve of the Trump presidency.  Many voters have made up their mind and are not responsive to the daily onslaught of alarming information.  I understand and am sympathetic to the public’s dilemma, summarized in a recent social media post:  “My desire to be well informed is presently at odds with my desire to remain sane.” 

Updated 12/10/25

For perspective, consider that President Biden’s composite approval poll on July 6, 2024 was negative 19.3%, just 15 days before Biden dropped out of the presidential race on July 21, 2024. 

The demonstrations I have attended are another window into the mood of the American public.  The NO Kings demonstration on June 14, 2025 is said to have drawn 5 million people.  The second NO Kings demonstration on October 18th claims to have drawn 7 million people.  Although these seem impressive numbers, they don’t add up to a change-making revolt.  The lack of young people participating in these demonstrations is dispiriting.  The future is in their hands, yet their commitment to democracy is lukewarm compared to my generation, the boomer generation that still feels a strong commitment to the peace and prosperity that democracy has delivered to us.

On the other hand, Democrats aren’t dead yet.  In November 2025, moderate Democrats won governorships in New Jersey and Virginia and a Democratic Socialist won the mayoral election in New York City.  In response to Republican gerrymandering of congressional districts in Texas, 64% of Californians voted to gerrymander congressional districts in favor of Democratic candidates.  A recent Marist poll indicated that registered voters in the US plan to vote for Democratic candidates for congressional seats in 2026 by a margin of 14%. 

Changes in the elected leadership of the Bay Area chapters of the Sierra Club are an indication of a change in the public’s commitment to the environment.  The San Francisco Bay Area Chapter is now led by activists who want more housing and more active recreational opportunities.  The old guard, who were committed to restricting recreational access in favor of native plant restorations in public parks, has been replaced.  The Lomo Prieta Chapter, which represents the South Bay, is now undergoing a similar transition to new leadership with new priorities.

Changes in the leadership of the San Francisco Bay Area chapters of the Sierra Club are symptomatic of the Club’s much broader decline on a national scale.  According to the New York Times, the Club has lost 60% of the 4 million members it had in 2019.  The Times attributes this loss of support to the change of the Club’s advocacy focus from environmental issues, most prominently climate change, to progressive social justice issues such as racial justice, gay rights, labor rights, and immigration rights. In 2019, one of the Board Directors objected to the proposed budget, but was voted down: “I said, ‘We have two F.T.E.s devoted to Trump’s war on the Arctic refuge, and we have 108 going to D.E.I., and I don’t think we have our priorities straight,’” Mr. Dougherty said.

Finally, wealthy American philanthropists are providing clues of a fundamental change in the political climate in America.  Bill Gates, former owner of Microsoft and supporter of global health initiatives, recently announced that it is time for a “strategic pivot” in the global climate fight from focusing on limiting rising temperatures to fighting poverty and preventing disease.  Gates still believes climate change is a serious problem, but it won’t be the end of civilization because he thinks scientific innovation will contain it.  Unfortunately, federal support for finding such scientific innovations has been withdrawn.  Gates’ message seems to be that we aren’t able to stop climate change, so we must cope with it.  It’s another way of accommodating the environmental policies of the Trump administration.

Looking Ahead

I am deeply troubled by the many threats to America’s treasured democracy.  However, many of the changes in environmental policies in the past year are aligned with the mission of Conservation Sense and Nonsense.  Since its inception in 2010, the mission of Conservation Sense and Nonsense has been the preservation of our predominantly non-native urban forest, opposition to the use of pesticides on public lands and advocacy for mitigating the causes of climate change.  Some of the changes in environmental policy in the past year are consistent with those goals:

  • Many projects that use pesticides and kill harmless animals and vegetation have been defunded by the federal government. The State of California is trying to compensate for the loss with state funding, but its ability to do so will be challenged by many other new demands on state resources, such as subsidies for health care and food.

When wildlife refuges and marine sanctuaries lost much of their funding and staff, many of their projects were abandoned.  Many of those projects may have been beneficial, but the plans to aerially drop rodenticides on the Farallon Islands to kill harmless mice is an example of a project that is better off dead.

  • Prevailing public opinion that native plants and animals are superior and the corresponding belief that non-natives are a threat to them is unlikely to change in the near-term.  I do not begrudge the horticultural preferences of home gardeners.  However, native plant advocates will have limited ability to demand that public land managers eradicate non-native plants if there is no public money available to fund landscape-scale “restorations.”
  • As public money for ecological “restorations” on public land dries up, the “restoration” industry and the jobs it creates will probably dwindle over time. As economic interests in “restoration” evaporate, the advocacy that supports it is likely to as well. College students are likely to make other educational choices with more promising career prospects, which will further reduce the labor force engaged in “restorations.”
  • When forest “restoration” projects that involve clear-cutting or removing healthy trees are defunded, existing carbon storage is preserved.  Every mature tree—native or non-native—sequesters carbon at a time when we need every available carbon sink to compensate for the loss of limits on greenhouse gas emissions causing climate change.
  • Climate change will accelerate as we abandon our efforts to reduce greenhouse gas emissions that cause climate change. The landscape that survives the changed climate will be best adapted to the changed environment.  When the climate changes, vegetation changes or dies.  No amount of human intervention can alter that ultimate reality because nature always bats last.

In 2026, Conservation Sense and Nonsense will continue to report major developments relevant to my mission.  In other words, I will continue to “hunker down and watch it play out.”  Guest posts consistent with my mission and civil comments, both pro and con, are always welcome here. Thank you for your readership. 

Happy Holidays and best wishes for a more peaceful year in 2026.

“Instead of ‘controlling’ non-native plants, perhaps we should practice more ‘self-control’”

Juian Burgoff

Julian Burgoff wrote a guest post for Conservation Sense and Nonsense about the undervalued functions of non-native aquatic plants in 2023.  Necessary Nuisance explained that non-native aquatic plants perform valuable ecological functions.  Attempts to eradicate aquatic plants deprive aquatic animals of valuable habitat.  The herbicides used to kill aquatic plants also pollute the water, harming aquatic animals and killing non-target aquatic plants. 

Julian Burgoff is an avid bass angler and aspiring fisheries ecologist from western Massachusetts.  He recently received a master’s degree with the Massachusetts Cooperative Fish and Wildlife Research Unit at UMass- Amherst where he studied juvenile river herring growth, diets and habitat use in coastal Massachusetts lakes and estuaries.  He is passionate about lake ecology and the management of aquatic vegetation in lakes and hopes to work in a field related to lake conservation and warmwater fisheries management in the future.

I am grateful to Julian for giving us another opportunity to publish an article about a specific project that is trying to kill valuable aquatic plants with herbicides.  Thank you, Julian.

Conservation Sense and Nonsense


Hydrilla and the Connecticut River: Falling into the “Invasive” Trap

If you spend time on the tidal Connecticut River in summer, you will likely see thick green mats covering its shorelines, coves and backwaters. This is hydrilla — a non-native aquatic plant that’s long been demonized by state agencies and lake managers across the country.

One morning during a summer internship performing fisheries related fieldwork on the river, I saw a young doe on the bank nibbling on a clump of hydrilla exposed at low tide. I laughed to myself — I knew it was good fish habitat, but even deer like the stuff!

The “official” position was that it was choking the river, outcompeting native species, and impeding recreational use of the river. But as a passionate angler and ecologist who studies aquatic ecosystems, I’ve learned that what we (as western scientists) think about non-native species and their impacts — especially in the world of aquatic plants — often turns out to be driven more by ideology than by scientific evidence.

The War on Hydrilla

Hydrilla arrived in the Connecticut River around 2016 and has since spread through the lower mainstem and its tributaries. In response, the Connecticut Agricultural Experiment Station (CAES) and the U.S. Army Corps of Engineers (USACE) have launched an aggressive herbicide campaign that seeks to “restore” native aquatic plant communities and study the efficacy of using a cocktail of various herbicides to treat the areas of the river where the growth of hydrilla is most prolific. Over the past few summers and into next year, private contractors plan to treat hundreds of acres of river coves with a mix of chemicals, including diquat and florpyrauxifen-benzyl.

On paper, this might sound like responsible ecological stewardship — reducing non-native plant stands such that their native counterparts can flourish. But in my view, it’s another example of what resource managers in Minnesota have referred to as “the invasive trap”: the belief that any non-native species must be “harmful”, and that launching management campaigns to kill them must be ecologically and economically beneficial.

The problem is that this assumption is not based on data, but on the dogmatic assumptions of invasion biology that underpin the world view of many western scientists and management agencies.

Unexpected Ecosystem Services: What the Evidence Shows

Across the country, hydrilla has often played the opposite role of what managers might expect. In the Chesapeake Bay and its tributaries, researchers found that hydrilla helped stabilize sediments, clear up murky water, and create habitat for fish and invertebrates — even helping native aquatic plant stands return. In Florida lakes, scientists compared lakes with and without hydrilla and found no major differences in fish, bird, or aquatic plant diversity.

In other words, hydrilla didn’t destroy these ecosystems where it was introduced. It filled open niche space, performed valuable ecosystem services, and is now integrated into the food web, for better or for worse.

That’s not to say hydrilla should be introduced to new water bodies or can’t impact ecosystems in ways that are perceived as harmful. Like many aquatic plants (native and non-native), hydrilla can grow in thick stands that interfere with swimming or boating, alter water chemistry and change physical habitat suitability for aquatic organisms. But many of these impacts are human nuisances, not ecological disasters, and should be managed as such. In large, dynamic systems like the Connecticut River, hydrilla’s role is likely far more complex — and possibly beneficial — than its label as “one of the world’s most invasive aquatic plants” suggests.

The Risks of Herbicide Use to “Restore” Native Plant Communities

Despite the lack of evidence that hydrilla is causing ecological “harm” to the Connecticut River, the proposed management intervention — widespread herbicide use — carries significant ecological risk.

Diquat, one of the main herbicides being applied, is what’s called a contact herbicide: it kills whatever plant tissue it touches (including native plant taxa). Florpyrauxifen-benzyl is a systemic herbicide, meaning it’s absorbed into plants and disrupts their growth. When a large quantity of aquatic plants rapidly die, they decay and release nutrients into the water, which can fuel algal blooms that reduce water clarity. If water clarity is significantly reduced, the very native plants managers aim to “restore” can’t regrow.

Ironically, hydrilla often bounces back first because it’s more tolerant of poor water quality than many native species. This can lock managers into a costly, never-ending cycle: herbicide use → temporary die-off → algal bloom → hydrilla regrowth → more herbicides.

Similar outcomes have been observed in Florida, where researchers found a large-scale florpyrauxifen-benzyl treatment sharply reduced hydrilla abundance in a Florida lake, but the plant regained dominance within a year as reduced water clarity from the treatment hindered native plant recovery.

Cascading Food Web Effects

As primary producers, aquatic plants are essential to the foundation of food webs — sheltering young fish, providing surfaces for invertebrates to live, and supporting wildlife like waterfowl. When herbicides are used to kill aquatic plants, there are often complex indirect impacts to the integrity of aquatic food webs.

Diquat is known to be toxic to not just plants (native and non-native) but invertebrates (the tiny animals that feed fish), such as amphipods. Even at concentrations lower than what’s used in field applications, diquat has the potential to impact these organisms which in turn may reduce available habitat for organisms higher up the food web like fishes.

Diquat also contains bromide, a compound that researchers have linked to a neurological disease killing bald eagles in the southeastern U.S. The disease develops when a particular cyanobacteria grows on hydrilla plants and interacts with bromide — forming a toxin that bio-magnifies as it moves up the food web. Ducks eat the hydrilla, eagles eat the ducks, and the toxin accumulates, damaging the eagles’ brains.

While this phenomenon hasn’t yet been documented in the Connecticut River, applying bromide-based herbicides in a manner that is likely to contribute to algal blooms (including cyanobacteria blooms) is not an ecologically sound management practice.

What We Don’t Know

Despite the confidence behind these large-scale management interventions, there’s little data showing how hydrilla has actually affected biodiversity or water quality in the Connecticut River. To prove that hydrilla is causing ecological “harm”, we’d need long-term monitoring — decades of data on aquatic plants, fish, wildlife, and water quality — collected before and after hydrilla became established. These data likely don’t exist at the scale needed to make an informed, unbiased assessment. Yet herbicide applications in the name of ecological “restoration” are moving forward anyway. The “post-monitoring” required by the project plan mostly focuses on the “efficacy” of the treatment (e.g. how much hydrilla biomass is reduced) not on whether algae blooms occur or how invertebrate and fish communities are affected.

This is a common phenomenon with herbicide treatments: the indirect effects of the management intervention are simply too complex and too costly to quantify. Based on the current “post-monitoring” protocol, if it’s found that hydrilla biomass is reduced and that native aquatic plant communities continue to exist following treatment, the project will be considered a success.

Less is More: Observation Based Management

Sometimes, the most ecologically mindful (and most cost effective) management decision is to pause to let species interactions occur unmolested and find their own equilibrium rather than impose an imaginary concept of what a given ecological community “should” be.

Where hydrilla interferes directly with human activities — say, blocking a boat ramp or clogging a marina — mechanical removal or small, targeted herbicide treatments could be reasonable management interventions. But broad, river-wide herbicide use is neither justified by science nor a long-term sustainable solution to non-native aquatic plant management.

With non-native species introductions, the truth is that there is no going back. Climate change, nutrient loading, and decades of physical habitat alteration via damming etc. have already changed this river beyond what it was a few centuries ago. Plants and animals are constantly being introduced and adapting to a new reality — one where species origins and “native” vs. “non-native” status matter far less than their role in maintaining ecosystem functions.

Rather than pouring more chemicals into the water, perhaps we should pour our efforts into observing, monitoring, and trying to understand why certain plants succeed and how ecosystems adjust to change over time. Instead of “controlling” non-native plants, perhaps we should practice more “self-control” and let nature heal itself without the imposition of the human ego and its desire to constantly fight the expressions of the natural world in the Anthropocene.

Julian Burgoff
Amherst, MA
jburgoff@umass.edu

The Post-Native World

Today, I’m publishing an excerpt of “The Post-Native World,” which was originally published by Ground Up, the Landscape Architecture and Environmental Planning Journal of the University of California, Berkeley. 

The author of the article, Mark Wessels, received his Master in Landscape Architecture at UC Berkeley. He is a licensed landscape architect and certified arborist.  He is a Senior Associate with PGAdesign in Oakland, California. 

Mark sent the following excerpt of his article in Ground Up to the members of the Oakland Urban Forest Forum, of which I am a member.  Mark’s article reflects my own belief that resilience of urban landscapes in a changing climate requires diversity, redundancy, and flexibility that can only be achieved with both native and introduced plants. 

Conservation Sense and Nonsense

Native ranges of trees in California’s urban forests. Source: Matt Ritter, Professor of Forestry, Cal Poly, SLO

CITIES AS HARBINGERS OF A POST-NATIVE WORLD
Native plant enthusiasts argue that native plants have evolved for thousands of years to be optimized for their environments. This is based on the assumption that environmental factors like soil type, climate, and ecological communities change very slowly, at the rate of geologic time. The fitness advantage of native plants depends on a relatively static, unchanging environment.

Yet cities are anything but static. Urban soils are altered by construction, compaction, and contamination. Impermeable surfaces and water infrastructure change urban hydrology. Urban heat island effect and microclimates affect soil and air temperatures. Cities are defined more by how urban they are than by where on the planet they are located. A tree adapted to urban environments, for example, is much more likely to flourish in San Francisco than one adapted to coastal dunes. In short, cities are post-native; they no longer reflect the environmental conditions for which native plants evolved. They are something new.

Cities are not the only places irreversibly altered by human activity. Human influence ripples out through resource extraction, food and energy production, and global climate change. Cities are already several degrees warmer than their historical temperatures, and many native plants cannot survive in this altered environment. Climate models predict several degrees of warming globally in the next 50 years. Native plants face challenges in urban settings today, and 50 years from now they will face challenges everywhere. As the effects of climate change spread beyond cities, landscape architects will need to move beyond geographic provenance to find plants adapted to a post-native world.

DIVERSITY OF APPROACHES VS. SINGLE STRATEGY
Globalization has irreversibly altered the planet, but it may also hold the key to surviving climate change. Designers today have unprecedented access to plants from around the world. For millennia, plants have been continuously evolving new, more efficient ways to survive in an astounding array of environmental conditions. In a post-native world, we will have to reconsider the idea that each plant is custom-evolved for a particular place on the earth, and instead think of global biodiversity as a library of adaptation. This library holds the key to successful planting in urban areas today, and hope for an uncertain future.

What I’m suggesting is that we embrace global biodiversity while we still have it; that our cities become hotbeds of plant species richness, hybridization, and cross-pollination; that we start a thousand divergent experiments, in small and controlled ways; and that we embrace this moment of globalization to produce an unprecedented explosion of diversity with which we can begin to replant and repopulate this irreversibly altered planet.

The resilience of natural systems lies in diversity, redundancy, and flexibility. Individual plants, and even individual species, die off frequently, but there is always another individual or another species to fill the void. Relying on a small set of native trees without embracing the redundancy and diversity of natural systems is a recipe for disaster.

Mark Wessels


California’s Wildlife Conservation Board needs to hear from you!

Although I have stopped writing original articles for Conservation Sense and Nonsense, I am still actively engaged in local environmental issues.  When there are opportunities to influence public policies that affect the environment, I often participate. 

Today, I am sharing my public comment on the update of the strategic plan of California’s Wildlife Conservation Board (WCB) in the hope that it might inspire you to write your own comment on the draft plan, which is available HEREThe deadline for submitting comments is May 16, 2025.  Comments may be sent to this email address:  wcb@wildlife.ca.gov

The mission of the Wildlife Conservation Board is to “protect, restore and enhance California’s spectacular natural resources for wildlife and for the public’s use and enjoyment…”  In service of that mission, WCB awards grants of millions of dollars every year for “restoration” projects.  According to WCB’s annual report for 2024, WCB awarded $93.5 million for “habitat restoration and enhancement of 5,000 acres” of land in California in 2024.

Source: “WCB 2024 Year in Review”

Over the life of the updated strategic plan, from 2025 to 2030, the Wildlife Conservation Board will distribute grants of $1.02 billion ($204 million per year) from funding made available by Proposition 4, the $10 billion “California Climate Bond,” which was approved by voters in November 2024.   Because most federal funding of climate and ecological restoration has been cancelled by the Trump administration (and being litigated, as we speak), the “California Climate Bond” will be one of the few sources of funding for these projects. 

This is my public comment on the strategic plan update for California’s Wildlife Conservation Board:


WCB Strategic Plan Update

Thank you for this opportunity to comment on the draft of WCB’s update of its strategic plan (SP).  I am writing to suggest that WCB consider the addition of a few over-arching principles that would apply to all of its programs.  These principles would enhance the plan’s stated goals of climate resilience and biodiversity protection by ensuring projects are evaluated based on their actual ecological outcomes rather than adherence to historical conditions.

  • All projects funded by WCB should be more constructive than they are destructive.  For example, a project that proposes to destroy more habitat than it creates should be less competitive than a project that will create more habitat than it destroys. A project that reduces carbon storage by destroying vegetation does not “reduce and remove carbon pollution,” as the SP proposes.
  • Projects that do not propose to use pesticides to destroy habitat should be more competitive than those that use pesticides because pesticides damage the soil and are harmful to wildlife and human life.   The success of projects is jeopardized by pesticide use.
  • Projects that apply for additional funding for a continuing project must address the fundamental question of the viability of the project.  In other words, if a project has been funded for 20 years, WCB should consider if the goals of the project are still realistic in a rapidly changing climate and environment (e.g., Invasive Spartina Project).
  • Projects should be consistent with the basic principles of science, such as:
    • The scientific definition of biodiversity includes both native and non-native plants and animals.
    • Hybridization is one of the tools of evolution that enables adaptation and speciation in response to changes in the climate and the environment.
    • The flammability of vegetation varies, but the variation is unrelated to the nativity of the plant.  Native plants are not inherently less flammable than non-native species.
    • The native ranges of California’s native plants have changed in response to the changing climate and they must continue to change if they are to survive.
    • Our changing environment dictates that historical landscapes cannot be replicated.  Humans cannot stop evolution, nor should we try.

I recommend that the WCB consider incorporating these principles into its project evaluation criteria to ensure that funded projects align with current ecological knowledge and maximize benefits for California’s biodiversity in a changing climate. Incorporating these principles into the SP would strengthen the plan’s objectives related to climate resilience (C2.1, C2.2), biodiversity protection (B1.1, B2.1), and program evaluation (D2.1, D2.2).

In support of these principles, I offer the following scientific studies for your consideration:

On pesticides damaging soil and harming wildlife and human health

  • Wan et al. (2025):  Pesticides affect a diverse range of non-target species and may be linked to global biodiversity loss. This study presents a synthesis of pesticide (insecticide, herbicide and fungicide) impacts on multiple non-target organisms across trophic levels based on 20,212 effect sizes from 1,705 studies. For non-target plants, animals (invertebrate and vertebrates) and microorganisms (bacteria and fungi), we show negative responses of the growth, reproduction, behavior and other physiological biomarkers within terrestrial and aquatic systems. Negative effects were more pronounced in temperate than tropical regions but were consistent between aquatic and terrestrial environments.  Results question the sustainability of current pesticide use and support the need for enhanced risk assessments to reduce risks to biodiversity and ecosystems.
  • Klein et al. (2024):  New Roundup formulations are 45 times more toxic to human health,on average, following long-term, chronic exposures. The study identified eight Roundup products in which Bayer has replaced glyphosate with combinations of four different chemicals: diquat dibromide, fluazifop-P-butyl, triclopyr, and imazapic. All four chemicals pose greater risk of long-term and/or reproductive health problems than glyphosate, based on the EPA’s evaluation of safety studies. Diquat dibromide and imazapic are banned in the EU. Diquat dibromide – present in all the new formulations – is 200 times more toxic than glyphosate in terms of chronic exposure and is classified as a highly hazardous pesticide.  New Roundup formulations pose significantly more harm to the environment. The chemicals replacing glyphosate in Roundup are significantly more likely to harm bees, birds, fish, earthworms, and aquatic organisms, on average. They are also significantly more persistent in the environment and more likely to leach down into groundwater, increasing the risk of contaminating waterways and drinking water.

On biodiversity including non-native species:

  • Schlaepfer et al. (2011): This pivotal paper challenges the automatic negative classification of non-native species by documenting their potential conservation benefits. The authors present evidence that some non-native species provide ecosystem services, habitat, and resources for native species, particularly in human-modified landscapes where native species may struggle. They advocate for conservation approaches that evaluate species based on their ecological functions rather than origin alone.
  • Mascaro et al. (2012): This study examines novel forests in Puerto Rico dominated by the non-native Castilla elastica tree. The research demonstrates that these novel ecosystems maintain key ecological processes such as productivity, nutrient cycling, and carbon storage at levels comparable to native forests. The findings suggest that novel ecosystems composed of non-native species can maintain essential ecosystem functions even after native tree species decline.

On hybridization as an adaptive mechanism:

  • Hamilton & Miller (2016): This paper reframes hybridization as a potential adaptive resource rather than a conservation threat. The authors present evidence that hybridization can introduce genetic variation that helps species adapt to changing environmental conditions, particularly relevant in the context of climate change. They suggest that conservation strategies should sometimes protect hybrid zones as sources of evolutionary potential rather than trying to eliminate them.
  • Fitzpatrick et al. (2015): This study examines how hybridization challenges traditional conservation approaches based on species preservation. The authors argue that hybridization is a natural evolutionary process that can generate biodiversity and adaptive potential. They present a framework for evaluating conservation value that considers genetic, ecological, and evolutionary factors rather than focusing solely on taxonomic “purity.”

On flammability unrelated to nativity:

  • Zouhar et al. (2008): This comprehensive technical report examines relationships between non-native plants and fire regimes. While acknowledging that some non-native plants can alter fire behavior, the report emphasizes that flammability is determined by plant structure, chemistry, and arrangement rather than nativity status. It provides detailed case studies showing both native and non-native plants can increase or decrease fire risk depending on specific traits.
  • Pausas & Keeley (2014): This study documents abrupt changes in fire regimes that occur independently of climate changes. The authors demonstrate that shifts in vegetation structure and fuel characteristics—which can be caused by both native and non-native species—are often more important determinants of fire behavior than plant origin. The research challenges simplistic assumptions about the relationship between native plants and fire resilience.

On changing native ranges:

  • Pecl et al. (2017): This influential paper documents how species are naturally shifting their ranges in response to climate change. The authors present global evidence of species redistributions across latitudinal, longitudinal, and elevational gradients. The study emphasizes that these range shifts are necessary adaptations to changing conditions and argues that conservation strategies need to accommodate these natural movements rather than trying to maintain historical distributions.
  • Bonebrake et al. (2018): This paper synthesizes research on climate-driven species redistribution and its implications for conservation. The authors highlight how traditional conservation approaches focused on preserving species in their historical ranges are becoming increasingly unviable under climate change. They advocate for more dynamic approaches that facilitate range shifts and species movements as adaptive responses to changing conditions.

On novel ecosystems and historical conditions:

  • Hobbs et al. (2014): This seminal paper introduces a framework for categorizing landscapes as historical, hybrid, or novel ecosystems. The authors argue that many ecosystems have been irreversibly altered by human influences and climate change, making restoration to historical conditions impossible in many cases. They advocate for pragmatic management approaches that focus on ecosystem functions and services rather than historical composition.
  • Stralberg et al. (2020): This study examines climate refugia in North America’s boreal forests. The research demonstrates that even supposedly pristine ecosystems will undergo significant changes due to climate change, with some areas serving as temporary refugia. The authors emphasize that conservation strategies need to recognize the transient nature of these refugia and plan for ongoing ecological transitions rather than static preservation.

In Conclusion

As you know, the mission of the Wildlife Conservation Board is to “protect, restore and enhance California’s spectacular natural resources for wildlife and for the public’s use and enjoyment…”  In addition, the Wildlife Conservation Board “envisions a future in which California’s wildlife, biodiversity and wild places are effectively conserved for the benefit of present and future generations.”  My suggestions for improvements in the draft strategic plan are consistent with the mission of the WCB. 

There was a time when academic scientists believed that the goal of conservation was to replicate historical landscapes by destroying plants and animals that were not here prior to European settlement.  Although many of these plants and animals found their way to California by natural means, without human assistance, they were perceived as “alien invaders” that didn’t belong here.  The assumption was that ecosystems can achieve an equilibrium state that represents an ideal that can be sustained by preventing change.  Science has long ago abandoned that notion in favor of acknowledging that nature is constantly changing in response to constant change in the environment. 

The belief that destroying such “alien invaders” would restore the landscape persisted for decades.  In many cases, no replanting was done after introduced plants were destroyed.  After poisoning our public land for decades, it has become clear to those who are not ideologically committed to historical landscapes that the original goal is not attainable because the plants and animals that survive are those that are best adapted to current environmental conditions, particularly the rapidly changing climate that is expected to continue to change.  In most cases, the newcomers are performing the same ecological functions of their predecessors and the harm that was presumed is usually balanced by benefits of their existence. 

Most academic scientists acknowledge this reality, but cultural lag has left the public behind as science has moved on.  Non-profit organizations that survive by the grace of their donors, have contributed to the pressure on public land managers such as the Wildlife Conservation Board.  Academic scientists are unwilling to participate in such grass-roots policy politics and their publications are often incomprehensible and inaccessible to the public and public land managers, leaving public land managers at the mercy of those with the least amount of information and the most amount of passionate belief.

The Wildlife Conservation Board has a responsibility to the public to inform itself of the consequences of conservation practices that are damaging the environment and are no longer realistic.  I respectfully ask that the WCB read the scientific studies I have provided and take them into consideration as it distributes over a billion taxpayer dollars made available by the passage of Proposition 4. 

Conservation Sense and Nonsense
May 1, 2025

References for cited studies

On pesticides harming soil and damaging wildlife and human health:

On biodiversity including non-native species:

  • Schlaepfer, M.A., Sax, D.F., & Olden, J.D. (2011). The potential conservation value of non-native species. Conservation Biology, 25(3), 428-437.
  • Mascaro, J., Hughes, R.F., & Schnitzer, S.A. (2012). Novel forests maintain ecosystem processes after the decline of native tree species. Ecological Monographs, 82(2), 221-228.

  On hybridization as an adaptive mechanism:

  • Hamilton, J.A., & Miller, J.M. (2016). Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conservation Biology, 30(1), 33-41.
  • Fitzpatrick, B.M., Ryan, M.E., Johnson, J.R., Corush, J., & Carter, E.T. (2015). Hybridization and the species problem in conservation. Current Zoology, 61(1), 206-216.

  On flammability unrelated to nativity:

  • Zouhar, K., Smith, J.K., Sutherland, S., & Brooks, M.L. (2008). Wildland fire in ecosystems: fire and nonnative invasive plants. General Technical Report RMRS-GTR-42-vol. 6. USDA Forest Service.
  • Pausas, J.G., & Keeley, J.E. (2014). Abrupt climate-independent fire regime changes. Ecosystems, 17(6), 1109-1120.

  On changing native ranges:

  • Pecl, G.T., et al. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355(6332).
  • Bonebrake, T.C., et al. (2018). Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science. Biological Reviews, 93(1), 284-305.

  On novel ecosystems and the impossibility of recreating historical conditions:

  • Hobbs, R.J., et al. (2014). Managing the whole landscape: historical, hybrid, and novel ecosystems. Frontiers in Ecology and the Environment, 12(10), 557-564.
  • Stralberg, D., et al. (2020). Climate-change refugia in boreal North America: what, where, and for how long? Frontiers in Ecology and the Environment, 18(5), 261-270.

“Speaking for the Trees, No Matter Where They’re From”

When I announced my intention to quit publishing articles on Conservation Sense and Nonsense in December 2024, I invited like-minded allies to send me guest posts for publication.  I also recommended several trusted sources of information about invasion biology and related issues.

I am publishing a guest article by one of those trusted sources today, with permission.  Kollibri terre Sonnenblume is the author of “Speaking for the Trees, No Matter Where They’re From,” available on Substack.  He introduces himself on that website:  “Writer, photographer, tree-hugger, animal lover, occasional farmer, cultural dissident. Author of several books on ecology, human culture, and their intersections. Podcaster on the side.”

For readers who love all plants, both native and non-native, I recommend the Substack of Kollibri terre Sonnenblume.  His articles are deeply researched, informative, and beautifully written.  His knowledge of plants far exceeds anything I have learned about plants because he works directly with them as an integral part of his life and he is an astute observer. 

Conservation Sense and Nonsense


What is a “native” plant in a changing world?

California Fan Palms in Anza-Borrego State Park in California (Photo by author)

The term “native plant” has become a common one, and many people probably assume that the definition is clear cut. However, like many other seemingly simple designations, that’s not the case.

It was in the UK in the mid-19th century where the concept of “native” as opposed to non-native was first proposed by Hewett Coltrell Wallace, who borrowed the terms “native” and “alien” from British immigration law. His definition of “native” also included “naturalized” species, which humans had introduced but that have come to live without them unaided.

Nowadays, whether a given plant is considered “native” where it is found growing is dependent on the interpretation of the interrelation of three factors: time, place and human involvement. There is no agreed-upon global definition.

So currently in the United States, a plant is generally considered native only if it grew here before European colonization. On the East Coast, that’s the 1500s and in California, that’s 1769. Plants introduced since then, whether deliberately or by accident, are labeled “non-native,” “introduced,” “exotic,” or in some cases, “invasive.”

In the UK, though the year 1500 is often cited too, some would set the date at the end of the last glacial maximum, 16,000 years ago, others at ~8000 years ago, when rising sea levels made those landmasses islands, and still others at the Roman invasion in 43 CE. Species introduced by the Romans can also be called “archaeophytes,” which inhabits a middle ground.

Other countries have their own cut-off dates, or, like China seem to still be working it out. Some have none at all, defining “non-native” only in terms of whether the species was introduced by humans, but not when. South Africa has a designation of “native-alien” referring to species that are native to one part of the nation but not to others.

Given that the term is so unstandardized, it’s impossible to make generalized statements about “native species” at the international level.

Plants on the move

The “native range” of any plant is not a static thing. Historically, plant ranges have always been in flux, often in response to climatic shifts, a process which continues in the present day more rapidly because of climate change. Had European colonization never occurred in the Americas, the ranges of plants today would not be the same as they were in 1492, which is a fact that’s not often considered in these discussions.

Fossils and phytogenetics are two things that can show us where plants used to live and where they came from. For example, when Spanish colonists arrived in California in the 18th Century, Coast Redwoods (Sequoia sempervirens) grew in a strip nearly 500 miles long and 5-47 miles wide from what is now Monterrey County in the south to Curry County (Oregon) in the north. Since then, over 95% of them have been cut down. The grievous sin of destroying so many Redwoods in California is compounded by the fact that much of their former habitat is now so altered by land use conversion and ecological changes like erosion that it won’t be home to these grand trees for the foreseeable future.

Only 10,000 years ago—a blip in geological time—Redwoods grew as far south as Los Angeles, and five million years ago, they were found in Europe and Asia. The species has also been spread around the world by humans, including to New Zealand, where a 15 acre grove has been growing for over a century. Due to favorable differences in soil and rainfall there, the trees happen to grow faster there than on the US West Coast.

We can ask, then: how should we define the current “native range” of Redwoods? Are the degraded places where they recently grew but now won’t still part of their “native range”? What about portions of the Oregon Coast immediately north of their most recent range, which they would naturally be moving into because of climate change, both anthropogenic and natural? What about New Zealand where the tree is thriving because the conditions for the tree are so appropriate? Is a Redwood grown today within its historic range in Europe truly “alien” or is it just coming home? By the narrowest definition of “native” these questions are absurd, but of course definitions too are always in flux.

For many, the salient point is “human interference” as opposed to “natural dispersal.”

In this way of thinking, the Creosote Bush (Larrea tridentata), the dominant and emblematic plant of the US Southwest’s Mojave Desert is native even though it arrived from South America as recently as 14,000 years ago, because its means of conveyance over those many thousands of miles was non-human; possibly in the tail feathers of migrating plovers.

But this way of thinking also tends to ignore an important element: the influence of indigenous humans over history, which definitely impacted the “native ranges” of many plants and animals.

Indigenous Land Management Practices

Controlled burns by Indians on the Great Plains expanded prairies at the expense of forests, which led to the spread of Buffalo.

Similar techniques on the West Coast maintained Oak Savannah and suppressed the growth of Firs and Hemlocks.

Seeds, bulbs, corms and other plant material for propagation were collected, transplanted and traded far and wide among tribes in North America. Some species (such as certain Mariposa Lilies in the genus Calochortus) may have dwindled in number to the point of being endangered these days in part because they are no longer actively tended by humans.

The case of the California Fan Palm is particularly intriguing. For years, it was believed that the iconic species was a millions-of-years-old relict, left over from when its current desert home in southern California was much moister. However, phytogenetic analysis proved that the species emerged quite recently, since the last glaciation period 11,000 years ago.

It’s long been known that Indians made use of Fan Palms and their groves for food, craft material, and as places to live. They planted trees and they also set fire to them to clear away the dead leaves so they would be easier to climb to collect the dates. (Fan Palms are fire tolerant.) However, it also appears that they might have been responsible for introducing them to the majority of locations within their “natural range” beyond the small area in Baja California where they originated. (See my Did Native Americans introduce Fan Palms to California?)

If this is the case, then the groves that remain are not the result of “natural dispersal” as that term is usually understood and are more akin to abandoned agricultural sites than to “wilderness.” What, then, is the best way to treat them? I mean, if we’re not going to allow tribes to maintain and use them as they did which is obviously the right answer? Burning is prohibited, as is harvesting and planting the fruits when the trees are on public land. Our current policy aims to protect the trees (which is understandable) but perhaps the actual result is neglect.

California Fan Palms are not the only trees that humans have moved around. In Asia, the “native range” of the Carpathian Walnut coincides with the route of the Silk Road. The distribution of food plants within the forests of the Amazon are anthropogenic. Polynesians brought plants with them as they made new homes on islands throughout the Pacific Ocean. In eastern North America, the “native ranges” of Black Walnut, Pawpaw, Persimmon, Chestnut, and Shellbark Hickory and other food plants are also the result of indigenous human influence. (h/t to Zach Elfers for this info.) They are all considered to be “in the right place” because that’s where they were before a particular calendar date.

Point being, ecosystems that we consider to be “wild” or plant ranges we consider to be “natural” are in many cases human-made or human-impacted. Some would go so far as to say that the very concept of “wilderness”—as in “untouched by humans”—is tantamount to indigenous erasure.

We are a plant-moving species, like many other animals. That settler-colonialism has wreaked havoc on the ecosystems of the Americas is all too clear but to conclude that all the introduced plants who live here now “don’t belong” because “we” brought them here is, I would argue, a step too far, much in need of nuanced examination. The idea that they should be eradicated purely on the basis of place of origin is not merely misguided, but dangerous, given the collateral damage that such efforts inevitably cause, such as disrupting beneficial relationships between native and non-native species that have since formed. Fortunately, the conversation does not need to be so limited.

“Novel Ecosystems” & Ecological Succession

Often, native plants are valorized and non-natives villainized in a reflexive manner that belies the facts on-the-ground. How well an introduced plant has integrated into its new setting is rarely considered by many people (though some invasion biologists do). Or the question of whether plants can become “native.”

“Novel ecosystems” are mixes of native and non-native species. Though formerly ignored by most researchers, they are now garnering more attention because it’s recognized that they operate like any other ecosystem, with their constituent species interacting and adapting and filling different roles just like happens anywhere else.

In California, approximately 1/3 of native butterfly species now use non-native plants as food sources and as egg-laying sites. The range of some of these butterflies has expanded as a result. (See: “Exotics as host plants of the California butterfly fauna“) This has been fortunate for the butterflies, since so much of the habitat that previously provided for them has been destroyed by human activity since 1769, through activities including agriculture, ranching, deforestation, mining, urban sprawl andmost recentlyindustrial-scale “green” energy installations. The butterflies are adapting to novel ecosystems.

Saltcedar/Tamarisk (Tamarix sp. and Russian Olive/Oleaster (Elaeagnus angustifolia) are oft-maligned as “invasive plants” that should be eradicated. But in the western United States, these two trees are now the third and fourth most frequently occurring woody riparian plants, and the second and fifth most abundant species along rivers. To kill them all would entail destroying a significant amount of healthy vegetation (with no small amount of collateral damage to other flora) and would incur an ecological cost. Their prevalence is due mostly to the thousands of dams that have disrupted most riparian areas in the West, making them less hospitable to the original natives like Cottonwoods and Willows. Novel ecosystems are emerging.

Fifty kinds of birds nest in Tamarisk, including the Southwestern Willow Flycatcher, which is endangered because of habitat loss. At least 44 kinds of birds, as well as various native mammals, eat Russian Olives as winter hardy food. Given the prevalence the introduced trees now, and the dearth of the natives, many animals are now dependent on them. Spraying the trees with herbicides has not, and will not, change the fact the dams are responsible for the altered landscape, not the trees themselves.

At some point, do we recognize that the Tamarisk and the Russian Olive are de facto “native” even if they’re not de jure? For what it’s worth, all those birds have already cast their vote. Additionally, from a taxonomic perspective, hybridization among various introduced Tamarisk species have produced fertile offspring that may be declared a new species, Tamarix americana [reference]. Since this species is found only in the US, isn’t it “native” here?

Additionally, “novel” aspects might be temporary after the process of “succession” advances. “Succession” is a common ecological process in which the dominant flora of a landscape changes over time due in part to the ways that landscape is changed by the flora itself. So, after a disturbancesuch as a landslide or the building of a roadthe first wave of plants (which are sometimes called “pioneer species”) are often annuals that quickly fill the space. They will produce a profusion of flower that attract pollinators and seeds that feed animals. Such pioneers can be thorny, which is nature’s way of saying, “Keep out while I fix this!” A hallmark of this stage is the rebuilding fertility in the soil.

The annuals might be followed by shrubs, including berry bushes, which attract yet more animals, including birds. The scat left by these animals enriches the soil more. The bushes provide shelter for trees to germinate, and in time, the trees shade out the berries.

There are cases where disturbed landscapes “invaded” by non-native plants have been left untouched, and the exotics have ended up doing nothing more than fulfilling the role of pioneer species, and the area has returned to “natives” over time. So, when “invasives” are constantly beaten back in a given location, it’s possible that this interference is holding back the natural process of succession and ironically working against the intended goal of bringing back natives.

Novel ecosystems demonstrate nature’s inherent resilience. What we need to do is recognize them as ecologically legitimate and work with them from there. As time goes on, we’ll certainly have more opportunities.

Climate Change

According to National Geographic, “Half of All Species Are on the Move.” This is because, as the climate changes, so do ecosystems. With temperatures rising, species are moving further north or higher in elevation. As time goes on, this means that more and more species will migrate “outside their natural range” thereby becoming “non-native” or evento some“invasive.”

Those that can migrate, that is. Many plants will become, as wildtending guru Finisia Medrano used to say, “refugees without legs,” unable to flee fast enough and far enough to find safe haven. If that’s the case, then we must help them, Finisia repeatedly counseled.

The biologists call this “assisted migration” and it’s a topic that coming up more frequently as time goes on. Some of the strongest arguments against it come from the anti-“invasive” crowd, but many native plant lovers are in favor.

Does It Matter?

The term “native” can have utility; it tells you that a plant was well-adapted to a given place in a given time period because of the conditions that existed there then, and this can be helpful in understanding a species or an ecosystem. But it’s not an ancient, universal concept among all humans by any means, and ultimately it’s just a label of no account whatsoever to the big mover and shaker of life, Mother Nature.

Kollibri terre Sonnenblume

Mid-Summer Visit to the Sierra Nevada

We spent a few days in a small family-owned resort in Sierra City in mid-July.  It’s an area we know well because we have visited many times in the past 25-years and taken many birding and geology courses at the nearby San Francisco State University Sierra Nevada Field Station. 

It has been about 12 years since our last visit and we were expecting to see significant changes after a decade of drought.  Our previous visits were also earlier in the summer, during nesting season in June, when birds are more active and vocal.  As expected, the weather was much warmer than previous visits.

The Setting

Sierra City sits at the base of Sierra Buttes at 4,200 feet elevation.  Sierra Buttes tower above at 8,560 feet.  The Buttes are the remains of the lava flow of an ancient volcano.  The soft rock surrounding the lava flow eroded away long ago and the harder rock has been sculpted several times by glaciers during past ice ages.  The glaciers sculpted rocks on the valley floor into the basins of many lakes that remain today. 

Sierra Buttes

This area was occupied by a hunter-gatherer culture of Indigenous people for thousands of years.  They migrated according to the seasonal harvests of plants and animals until Europeans arrived in 1850 to mine for gold.  The first generation of the owners of the resort arrived as miners.  When gold was exhausted, ranching became the family enterprise.  When the recreational treasures of the area were discovered in the 1960s, the family converted the ranch to a resort in 1967.  The economy of this area has evolved, just as its flora and fauna have.

Fire Hazard Mitigation?

The most significant change we observed since we were last in the Sierras is the massive timber operations.  In the 12 miles from Sierra City to Yuba Pass at 6,700 feet, we saw roadside clearings created by cutting young trees.  Huge piles of small-diameter logs and wood chips were stacked in the clearings (see below).

Chapman Creek Campground

These clearings looked like fire hazard mitigation partly because of their proximity to the road and to campgrounds, but also because they destroyed small trees, which are more likely to ignite than big trees.  On the other hand, the piles of logs and wood chips are more flammable than any living tree, big or small. 

Thinning the forests is also a strategy to reduce competition for available moisture at a time of extreme drought.  Extreme drought stress in the conifer forests of the Sierra Nevada is one of the primary causes of tree mortality in California in the past decade. 

Commercial Logging?

When we reached the summit of the road at Yuba Pass, we saw another clearing that used a different strategy than those we had passed.  The campground at Yuba Pass was entirely clear cut of all of its trees, big and small.  Lonely picnic tables were surrounded by the stumps of large trees.  Appropriately, the campground was closed and its bathroom locked (see below).  No one would want to camp there now.

This destruction of the campground at Yuba Pass looks like a fire hazard mitigation project gone bad or a commercial logging operation at the expense of a campground at an important trail head that is used for winter cross-country skiing and summer hiking. 

We visited the bar at our resort at the end of the day to get the perspective of the locals about these logging operations on Highway 49.  We learned that they are controversial with the locals, but there is no vocal opposition to them in a small community of only 200 year-round residents. (The bartender said the community was more concerned about AT&T’s threats to disconnect their landline phones because the community does not have a cell phone tower.)

However, the public’s reaction to the destruction of the campground at Yuba Pass was much stronger than to the thinning of young trees.  The rumor is that the contractor who clear cut the campground at Yuba Pass did not do what they were supposed to do.  The Yuba Pass project is considered a rogue operation by the locals. 

We also learned that the piles of logs and wood chips will eventually be hauled away to be used as biofuels to generate electricity.  As the wood is burned, the carbon stored in the wood will be released into the atmosphere, contributing to greenhouse gases that cause climate change.  Some of the dead wood has already been removed.  Nine months after the trees were destroyed, much still remains to be removed.  Meanwhile, the piles are clearly a fire hazard.  Fire hazards are increased in the short term by dead wood and in the long term by contributing to global warming. 

Tree Mortality

At Yuba Pass, we began to see first-hand the tree mortality in the Sierra Nevada we had been reading about in the media for years.  We saw many dead red firs as well as one of the symptoms of more red fir deaths in the near future. 

Adjacent to dead red fir trees, younger red fir trees were heavily loaded with cones, which are an indication that the tree is making a last gasp for survival of the species by trying to produce a big, new generation of trees (see above).

As we drove over the summit to the eastern side of the Sierra Nevada we could see the scale of the death of red and white firs.  The eastern side of the Sierras is drier than the gently-sloping western side, which receives the moist air from the ocean.  The Sierras drop steeply on the eastern side to the Great Basin, which extends into Nevada as a dry, hot desert.  (see below)

Dead conifers at Yuba Pass in October 2022. Source: Sierra Nevada Conservancy

Until 2022, tree mortality in the Sierra Nevada range was confined to southern and central portions of the range and at lower elevations.  An aerial survey of trees in the northern portions of the range in October 2022 found 28 million dead red and white firs at higher elevations.  Red and white firs are higher elevation conifers and were therefore harder hit than lower elevation conifers in this portion of the range.* 

Ecological “restorations” are never done

We visited a restoration project on the eastern side of Yuba Pass at Carmen Meadow.  The project was done about 20 years ago.  We wanted to see how it was progressing.

The meadow had been the home of rare willow flycatchers until it dried out, killing the willows that were home to the flycatchers.  A berm had been built as the roadbed of a railroad. The berm diverted water into the creek, digging its channel lower than the meadow, draining water from the meadow into the creek. A check-dam was built to divert water channeled by the berm from the creek into the meadow, restoring water to the meadow. The flycatchers returned when the willows returned. 

We had last seen Carmen Meadow over 12 years ago.  Although willows remained, there were also young Jeffrey pines on the perimeter of the meadow as well as dotted throughout the meadow.  Thus, natural succession from pond, to meadow, to forest is in progress. (see below) Restoration projects are never done because nature is dynamic and evolution is never done.

Carmen Meadow

Must this natural succession of the Carmen Meadow be stopped?  That is probably a matter of opinion.  My readers know that my opinion is probably “NO.”  In defense of my opinion, I offer my readers an alternative scenario.

Willow flycatchers are also rare in the Southwest, where the loss of water also caused the loss of willows that are home to the flycatchers.  But, in Southwestern desert, the solution is not so easy and painless as diverting water into Carmen Meadow. 

Water in the Southwest has been diverted from riparian areas for agriculture and drinking water for large and growing residential communities.  As you might imagine, few are willing to divert water supporting human activities to support a rare bird. 

In the Southwest, willow flycatchers solved their own problem by making the necessary transition from willows to non-native tamarisk trees that require significantly less water than willows.  And in this case, native plant advocates resisted this transition by trying to eradicate tamarisk solely because they are not native trees.  The birds were willing and able to transition to a non-native tree, but the nativists wouldn’t accommodate their preference. 

The Message

We had a wonderful time on our brief trip to Sierra City at Yuba Pass.  We hope to go again and we expect to see more changes when we do.  We took these messages away with us.

  • Yes, the Sierra Nevada range is changing, but it remains beautiful.  We encourage you to visit and if you have, visit again because it is never the same twice.
  • There is a fine line between fire hazard mitigation and commercial logging and it isn’t always clear what the objective is. 
  • The short-term objectives of any landscape project are sometimes at odds with the long-term objectives.
  • Change is the only constant in nature.

*Sources:
https://www.sfchronicle.com/climate/article/california-tree-deaths-17770026.php
https://sierranevada.ca.gov/signs-of-a-new-tree-mortality-event-showing-up-in-the-sierra-nevada/

History of Earth predicts its future

My interest in the native plant movement began about 25 years ago when my neighborhood park was designated as a “natural area” by San Francisco’s Recreation and Park Department.  My park was only one of 33 parks in San Francisco that were designated as a “natural area.” 

What did it mean to be a “natural area?”  As I studied the plans, my reaction was primarily to the proposed destruction of non-native plants and trees.  Later I realized that the eradication of non-native plants and trees would be accomplished with herbicides. 

Stern Grove Park in San Francisco was my neighborhood park where I began my long journey to understand why anyone would want to destroy trees in a treeless neighborhood. 

How could the creation of native plant gardens justify the destruction of our urban forest using herbicides?  I have spent the last 25 years trying to answer that question.  There are many useful lines of inquiry in the search for the answer, but the approach that has been most helpful to my understanding of the futility of the undertaking has been the study of the physical and biological forces that created Earth and its inhabitants.  Today, I will take you on an abbreviated journey of the past 4.6 billion years of events on Earth that have resulted in present-day nature, drawing from A Brief History of Earth by Andrew Knoll, Professor of Natural History at Harvard University. (1)

Gravity “created” the Earth

“Gravity is the architect of our universe.”  Gravity is the attraction of objects to one another in proportion to their mass and proximity that over billions of years accumulated the elements dispersed in Earth’s universe.  As these dispersed objects coalesced into stars, planets, moons, and asteroids, Earth was formed about 4.6 billion years ago.

Cross-section of Earth. Source: USGS

“Earth is a rocky ball.”  Its inner core is solid, composed mostly of iron.  Earth’s molten outer core moves by convection as hotter, denser material near the base rises and cooler, less dense matter toward the top sinks.  This circular motion generates electrical current that creates the Earth’s magnetic field.  The mantle is composed of the molten magma that emerges on the surface crust of Earth where tectonic plates are separating and when volcanoes erupt where tectonic plates submerge into the mantle. The crust of Earth that is visible to us is only 1% of Earth’s mass.

Physical Earth

Simplified map of Earth’s principal tectonic plates, which were mapped in the second half of the 20th century (red arrows indicate direction of movement at plate boundaries).  Source:  USGS

The crust of Earth is composed of plates that are moved on the surface of the Earth by the convection current of the mantle.  Some of the plates are moving away from one another where they meet.  As the plates separate, molten magma from the mantle is pushed through the crust, forming new crust.  The North American and Eurasian plates are moving apart in the middle of the Atlantic Ocean at the rate of about 1 inch per year. 

Since the Earth is not getting bigger, the expanding crust collides with adjacent plates.  In some places, the collision of the plates pushes up the crust into mountain ranges.  The Himalayan mountain range is the result of the collision of the Indo-Australian and the Eurasian Plates, a process that continues today.

Map of subducted slabs, contoured by depth, for most active subduction zones around the globe. Source:  USGS

In other places, the expanding crust is pushed below the adjacent plate in subduction zones, where the crust dives below the crust into the mantle.  Earthquakes are common in subduction zones and the subducting plate triggers volcanic eruptions in the overriding plate.  Earthquakes are also common where adjacent plates are grinding against one another in opposite directions, as is the case on the coast of California.

Pangea super-continent

The movement of tectonic plates has assembled and reassembled the Earth’s continents many times. The entire history of the configuration of continents is not known to us because of the cycle of the crust emerging from the mantle only to return to the mantle about 180 million years later.  We know that all continents were fused into a single continent, named Pangea, about 350 million years ago and began to break up 200 million years ago.  Much of life as we know it evolved on Earth while the continents were fused, which is one of the reasons why all life on Earth is related.  Geographic isolation of species results in more biodiversity as genetic drift and different environments result in greater speciation.  Geologists believe such continental mergers are likely in the distant future.  

Earth’s oceans and atmosphere were formed within the first 100 million years of its birth.  Continents were visible above oceans, but small compared to their present size.  The absence of oxygen in the air at that early stage was the most significant difference between present and early Earth.

Biological Earth

Life, as presently defined, requires growth and reproduction, metabolism, and evolution. (I say, “presently defined” because debate continues about defining viruses as life since they do not meet all criteria.)  The chemical components required to perform the functions of life and the natural processes to combine them (such as heat and lightning) were available on Earth for millions of years before they combined to perform the functions of life.  Precisely how and when that happened on Earth is studied intensely, but not conclusively known, although Professor Knoll describes theoretical possibilities. 

The geological record suggests that “Earth has been a biological planet for most of its long history.” Microbes may have been living on Earth 4 billion years ago.  Climate on Earth was warm at that time for the same reason the climate is warming today.  The atmosphere was composed primarily of carbon dioxide (the greenhouse gas that traps heat on the surface of the Earth) and nitrogen:  “…life emerged on an Earth barely recognizable to the modern eye—lots of water and not much land, lots of carbon dioxide but little or no oxygen…”

Oxygen Earth

Phylogenetic tree of life based on Carl Woese et al. rRNA analysis. The vertical line at bottom represents the last universal common ancestor.

Two of the three domains of life were capable of living without oxygen:  archaea and bacteria.  Archaea are single-cells without nuclei.  We are all too familiar with bacteria, as they are as much a part of our bodies as our own cells.  Oxygen was the prerequisite for the evolution of the third domain of life, eukarya.  The kingdoms of eukarya most familiar to us are plants, animals, and fungi. 

Oxygen arrived on Earth when early life forms evolved the ability to photosynthesize, the process by which plants (and some other organisms) use sunlight to synthesize food from carbon dioxide and water, generating oxygen as a byproduct.  This transition occurred about 2.4 billion years ago, as measured by the absence of iron on the seafloor after that time. 

Photosynthesis alone could not have accomplished the transformation of Earth’s atmosphere to the balance of carbon dioxide and oxygen needed to support complex life on our planet because photosynthesis also requires nutrients as well as sunlight and water.  Phosphorous weathers from rocks, a process that was initially limited by the small amount of land above sea level.  As the planet matured, more land emerged from the sea, making more phosphorous available to photosynthesizing organisms.  Photosynthesis was also enhanced when some bacteria and archaea evolved the ability to convert nitrogen gas into biologically usable molecules, a process called nitrogen-fixing.  Many plants in the legume family are capable of nitrogen-fixing today.

Extinctions of the past predict extinctions of the future

There have been five major extinction events in the past 500 million years that changed the course of evolution of life on Earth and at least 20 mass extinctions in total (2).  The first representatives of all modern animal phyla (a taxonomic classification between kingdom and class) evolved during the Cambrian Period (541-486 million years ago).  All extinction events were associated with radical changes in the climate.  Many of the changes in the climate were caused by changes in the balance of carbon dioxide and oxygen in the atmosphere.  All these catastrophic events were natural events, not caused by the activities of humans because they all occurred long before the advent of human evolution. 

The third and biggest extinction event occurred 252 million years ago at the end of the Permian geologic period, when more than 90% of marine animals and 70% of terrestrial species disappeared.  At that time, continents were fused into the single supercontinent of Pangea.  The extinction of most life on Earth was caused by the sudden and catastrophic change in the atmosphere–and therefore the climate–by an episode of volcanism in Siberia “a million times greater than any volcanism ever witnessed by humans” or our primate ancestors.  Gases emitted by volcanism at the end of the Permian period rapidly increased the carbon dioxide content of the atmosphere and oceans by several times greater than before that event.  “It would take 10 million years for life to reassemble into something approaching the complexity of the ecosystems that preceded it. The world that emerged from the volcanic dust was unlike anything that came before.” (2) The current increase of carbon dioxide in the atmosphere caused by the burning of fossil fuels by human activities is comparable to this event and is expected to cause the sixth great extinction on Earth.  

The fifth and most recent massive extinction event occurred 66 million years ago, bringing 170 million years of dinosaur evolution to an abrupt end. The entire environment of the planet was radically and suddenly altered by the impact of an asteroid 7 miles in diameter that landed on what is now the Yucatan peninsula in Mexico.  The impact engulfed Earth in a dust cloud that precipitated the equivalent of a nuclear winterkilling most vegetation and animals adapted to a much warmer climate.  As with all massive extinctions, it took millions of years for plants and animals to slowly evolve adaptations to the new environment.  Dinosaurs did not evolve again, a reminder that evolution does not necessarily repeat itself (although birds evolved from dinosaurs).  Although there were small mammals during the dinosaur age, the disappearance of dinosaurs and corresponding changes in the climate introduced the age of mammals, including the human lineage about 300,000 years ago.  When multiple animal groups disappear it creates opportunities by reducing competition between groups.

What can we learn from the history of Earth?

If a native plant advocate were reading this abbreviated history of Earth, these are the lessons I would hope they might learn from it:


  1. Andrew H. Knoll, A Brief History of Earth, 2021.  All quotes in this article are from this excellent book unless otherwise indicated.
  2. Elsa Panciroli, Beasts Before Us: The Untold Story of Mammal Origins and Evolution, Bloomsbury Sigma, 2021.

A Natural History of the Future

“The way out of the depression and grief and guilt of the carbon cul-de-sac we have driven down is to contemplate the world without us. To know that the Earth, that life, will continue its evolutionary journey in all its mystery and wonder.” Ben Rawlence in The Treeline

Using what he calls the laws of biological nature, academic ecologist Rob Dunn predicts the future of life on Earth. (1)  His book is based on the premise that by 2080, climate change will require that hundreds of millions of plant and animal species—in fact, most species–will need to migrate to new regions and even new continents to survive.  In the past, conservation biologists were focused on conserving species in particular places.  Now they are focused on getting species from where they are now to where they need to go to survive.

In Dunn’s description of ecology in the future, the native plant movement is irrelevant, even an anachronism.  Instead of trying to restore native plants to places where they haven’t existed for over 100 years, we are creating wildlife corridors to bypass the obstacles humans have created that confine plants and animals to their historical ranges considered “native.” 

The past is the best predictor of the future. Therefore, Dunn starts his story with a quick review of the history of the science that has framed our understanding of ecology.  Carl Linnaeus was the first to create a widely accepted method of classifying plants and animals in the 18th century.  Ironically, he lived in Sweden, one of the places on the planet with the least plant diversity.  Colombia, near the equator, is twice the size of Sweden but has roughly 20 times the number of plant species because biodiversity is greatest where it is hot and wet.

Global Diversity of Vascular Plants. Source: Wilhelm Barthlott, et. al., “Global Centers of Vascular Plant Diversity,” Nova Acta Leopoldina, 2005

 

Humans always have paid more attention to the plants that surround us and the animals most like us.  Dunn calls this the law of anthropocentrism.  We are the center of our own human universe.  Consequently, our awareness of the population of insects that vastly outnumber us came late to our attention in the 20th century.  In the 21st century we learned that all other forms of life are outnumbered by the microbial life of bacteria, viruses, and fungi that preceded us by many millions of years.  Our knowledge of that vast realm of life remains limited although it is far more important to the future of the planet than we realize because those forms of life will outlast our species and many others like us.

Tropical regions are expanding into temperate regions

The diversity and abundance of life in hot and wet tropical climates give us important clues about the future of our warming climate.  We tend to think of diversity as a positive feature of ecosystems, but we should not overlook that tropical regions are also the home of many diseases, such as malaria, dengue fever, zika, and yellow fever that are carried by insects that prey on animal hosts, including humans.  In the past, the range of these disease-carrying insects was restricted to tropical regions, but the warming climate will enable them to move into temperate regions as they warm. The warming climate will also enable the movement of insects that are predators of our crops and our forests into temperate regions.  For example, over 180 million native conifers in California have been killed in the past 10 years by a combination of drought and native bark beetles that were killed during cold winters in the past, but no longer are.  Ticks are plaguing wild animals and spreading disease to humans in the Northeast where they did not live in the cooler past. 

Human populations are densest in temperate regions“The ‘ideal’ average annual temperature for ancient human populations, at least from the perspective of density, appears to have been about 55.4⁰F, roughly the mean annual temperature of San Francisco…” (1) This is where humans are most comfortable, free of tropical diseases, and where our food crops grow best.  As tropical regions expand into temperate regions, humans will experience these issues or they will migrate to cooler climates if they can.

Our ability to cope with the warming climate is greatly complicated by the extreme variability of the climate that is an equally important feature of climate change.  It’s not just a question of staying cool.  We must also be prepared for episodic extreme cold and floods alternating with droughts. Animals stressed by warmer temperatures are more easily wiped out by the whiplash of sudden floods or drought.

Diversity results in resiliency

Diversity can be insurance against such variability.  If one type of crop is vulnerable to an insect predator, but another is not, growing both crops simultaneously increases resiliency.  That principle applies equally to crops that are sensitive to heat, cold, drought, or floods. 

Agricultural biodiversity. Source: Number of harvested crops per hectar combining 175 different crops. Source: Monfreda et al. 2008. “Farming the planet: Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000”. Global Biogeochemical Cycles, Vol. 22.

Historically, cultures that grew diverse crops were less likely to experience famine than those that cultivated monocultures.  The Irish potato famine of the mid-19th century is a case in point.  The Irish were dependent upon potatoes partly because other crops were exported to Britain by land owners. When the potato crop was killed by blight, more than one million people died in Ireland and another million left Ireland.  The population dropped about 20-25% due to death and emigration.  The diversity of crops in the United States (where corn is the commodity crop) and Brazil (where soy is the commodity crop) is very low, compared to other countries.  This lack of diversity makes us more vulnerable to crop failure and famine, particularly in an unpredictable climate.

Change in total use of herbicides, antibiotics, transgenic pesticide producing crops, glyphosate, and insecticides globally since 1990. Source: A Natural History of the Future

Instead of increasing crop diversity, we have elected to conduct chemical warfare on the predators of our crops by using biocides, such as pesticides for agricultural weeds and insects and antibiotics for domesticated animals.  The scale of our chemical warfare has increased in response to growing threats to our food supply.  This is a losing strategy because as we increase the use of biocides we accelerate evolution that creates resistance to our biocides. We are breeding superweeds, insects, and bacteria that cannot be killed by our chemicals.  This strategy is ultimately a dead end.

Evolution determines winners and losers

Inevitably, evolution will separate the survivors of climate change from its victims. Dunn reminds us that “The average longevity of animal species appears to be around two million years…” for extinct taxonomic groups that have been studied.  In the short run, Dunn bets on the animals that are most adaptable, just as Darwin did 160 years ago.  The animals most capable of inventing new strategies to cope with change and unpredictability will be more capable of surviving.  In the bird world, that’s corvids (crows, ravens, jays, etc.) and parrots.  In the animal world that’s humans and coyotes.  We aren’t helping adaptable animals survive because we are killing abundant animals based on a belief it will benefit rare animals.  Even in our urban setting, the East Bay Regional Park District contracts Federal Wildlife Services to kill animals it considers “over-abundant,” including gulls, coyotes, free-roaming cats, non-native foxes, and other urban wildlife throughout the Park District.  We are betting on evolutionary losers.

 

If and when humans create the conditions that cause our extinction, many of our predators are likely to disappear with us.  Bed bugs and thousands of other human parasites are unlikely to survive without us.  Many domestic animals will go extinct too, including our dogs.  On the bright side, Dunn predicts that cats and goats are capable of surviving without us.             

Timeline of the evolution of life. Source: CK-12 Foundation

However, in the long run Dunn bets on microbial life to outlast humans and the plants and animals with which we have shared Earth.  Humans are late to the game, having evolved from earlier hominoids only 300,000 years ago, or so.  The plants and animals that would be recognizable to us preceded us by some 500 million years, or so.  But microbial life that is largely invisible to us goes back much further in time and will undoubtedly outlast us.  Dunn says microbial life will give a big, metaphorical sigh of relief to see us gone and our environmental pollutants with us.  Then microbial life will begin again the long process of rebuilding more complex life with their genetic building blocks and the tools of evolution. 

Some may consider it a sad story.  I consider it a hopeful story, because it tells me that no matter what we do to our planet, we cannot kill it.  For the moment, it seems clear that even if we are not capable of saving ourselves at least we can’t kill all life on Earth.  New life will evolve, but its features are unfathomable because evolution moves only forward, not back and it does not necessarily repeat itself. 


  1. A Natural History of the Future, Rob Dunn, Basic Books, 2021

Conservation Sense and Nonsense

You are receiving this announcement of our changed focus and new name because you are a subscriber to our original Million Trees blog.  This is our revised mission for the Conservation Sense and Nonsense blog:

Conservation Sense and Nonsense began in 2010 as the Million Trees blog to defend urban forests in the San Francisco Bay Area that were being destroyed because they are predominantly non-native.  In renaming the Million Trees blog to Conservation Sense and Nonsense, we shift the focus away from specific projects toward the science that informed our opposition to those projects. 

Many ecological studies have been published in the past 20 years, but most are not readily available to the public and scientists are often talking to one another, not to the general public.  We hope to help you navigate the scientific jargon so that scientific information is more accessible to you.  If this information enables you to evaluate proposed “restoration” projects to decide if you can or cannot support them, so much the better.

Anise Swallowtail butterfly in non-native fennel. Courtesy urbanwildness.org

Since 2010, we have learned more about the ideology of invasion biology that spawned the native plant movement and the “restoration” industry that attempts to eradicate non-native plants and trees, usually using herbicides.  We have read scores of books and studies that find little scientific evidence in support of the hypotheses of invasion biology.  We have studied the dangers of pesticides and the growing body of evidence of the damage they do to the environment and all life. 

Meanwhile, climate change has taken center stage as the environmental issue of our time.  Climate change renders the concept of “native plants” meaningless because when the climate changes, vegetation changes.  The ranges of plants and animals have changed and will continue to change to adapt to the changing climate.  Attempting to freeze the landscape to an arbitrary historical standard is unrealistic because nature is dynamic.  Evolution cannot be stopped, nor should it be.

Destroying healthy trees contributes to climate change by releasing stored carbon into the atmosphere.  Both native and non-native trees store carbon and are therefore equally valuable to combat climate change.  Native vegetation is not inherently less flammable than non-native vegetation.  There are advantages and disadvantages to both native and non-native vegetation. 

The forests of the Earth are storing much of the carbon that is the primary source of greenhouse gases causing climate change.  Deforestation is therefore contributing to climate change.  By destroying healthy trees, the native plant movement is damaging the environment and its inhabitants.

Housekeeping

All of the articles on the Million Trees blog are still available in the archive on the home page.  The search box on the home page will take you to specific subjects of interest.  Visit the pages listed in the sidebar of the new home page for discussion of each of the main topics by clicking on the links above.  Readers who subscribed to the Million Trees blog will receive new articles posted to Conservation Sense and Nonsense unless they unsubscribe.  Thank you for your readership.  Your comments are welcome and will be posted unless they are abusive or repetitive. 

California’s Urban Greening Grant Program: An opportunity to speak for the trees

In September 2016, the State of California passed a law that allocated $1.2 billion to create a cap and trade program to reduce Greenhouse Gas (GHG) emissions.  The California Natural Resources (CNR) Agency was allocated $80 million to fund green infrastructure projects that reduce GHG emissions.  The CNR Agency is creating an Urban Greening Program to fund grants to cities, counties, and other entities such as non-profit organizations in URBAN settings.  75% of the funding must also be spent in economically disadvantaged communities.

These grants must reduce GHG emissions using at least one of these specific methods:

  1. Sequester and store carbon by planting trees
  2. Reduce building energy use from strategically planting trees to shade buildings
  3. Reduce commute, non-recreational and recreational vehicle miles travelled by constructing bicycle paths, bicycle lanes, or pedestrian facilities.

Clearly, planting trees is one of the primary objectives of this grant program.  That sounds like good news for the environment and everyone who lives in it until you read the draft program guidelines which are available HERE.

Unfortunately, as presently drafted, the grant program will NOT increase California’s urban tree canopies, because the program requires the planting of “primarily” native trees.   That requirement is explicitly stated several times in the draft guidelines, but there are also places in the draft where the reader might be misled to believe the requirement applies only to plants and not to trees.    Therefore, I asked that question of the CNR Agency staff and I watched the public hearing that was held in Sacramento on October 31st.  CNR Agency staff responded that the requirement that grant projects plant “primarily” native species applies to both plants and trees.

The good news is that the grant program guidelines are presently in draft form and the public has an opportunity to comment on them.  If you agree with me that we need our urban forest, you will join me in asking the CNR Agency to revise their grant program guidelines to remove restrictions against planting non-native trees.   Public comment must be submitted by December 5, 2016.  Send comments to:  Urban Greening Grant Program c/o The California Natural Resources Agency Attn: Bonds and Grants Unit 1416 Ninth Street, Suite 1311 Sacramento, CA 95814 Phone: (916) 653-2812, OR Email: urbangreening@resources.ca.gov Fax: (916) 653-8102

Here are a few of the reasons why limiting trees to native species will not increase tree canopies in urban areas in California:

Many places in California were virtually treeless prior to the arrival of Europeans.  Non-native trees were planted by early settlers in California because most of our native trees will not grow where non-native trees are capable of growing.  According to Matt Ritter’s California’s Guide to the Trees Among Us, only 6% of California’s urban trees are native to California:

urban-trees-origins

Draft guidelines for the Urban Greening grants refers applicants to the California Native Plant Society for their plant palette (see page 24 of guidelines).  If applicants use this as the source of their plant palate, they will find few trees on those lists.  This is another way to understand that if you want trees in California, most of them must be non-native.

Most California native trees are not suitable as street trees because of their horticultural requirements and growth habits. 

  • The approved list of street trees for the City of San Francisco includes no trees native to San Francisco.  There are many opportunities to plant more trees in San Francisco because it has one of the smallest tree canopies in the country (12%).  The US Forest Service survey of San Francisco’s urban forest reported that 16% are eucalyptus, 8% are Monterey pine, and 4% are Monterey cypress.  None of these tree species is native to San Francisco.
  • The approved list of street trees for the City of Oakland includes 48 tree species of which only two are natives. Neither seem appropriate choices:  (1) toyon is a shrub, not a tree and the approved list says it will “need training to encourage an upright form.”  It is wishful thinking to believe that toyon can be successfully pruned into a street tree; (2) coast live oak is being killed by the millions by Sudden Oak Death and the US Forest Service predicts coast live oaks will be virtually gone in California by 2060.

coast-live-oak-current

coast-live-oak-2060

Climate change requires native plants and trees to change their ranges if they are to survive.  One of the indicators of the impact of climate change on our landscapes is that 70 million native trees have died in California because of drought, insect infestations, and disease.  The underlying cause of these factors is climate change.

  • 66 million native conifers have died in the Sierra Nevada in the past 4 years because of drought and native bark beetles that have spread because winters are no longer cold enough to keep their population in check.  Update:  A new survey of California’s trees now reports that 102 million trees are now dead.  That’s one-third of California’s trees.  62 million trees died in 2016 alone, which is an accelerating rate of death.  These trees are still standing and they pose an extreme fire hazard.  These are NATIVE TREES being killed by a combination of drought and NATIVE BARK BEETLES.  
  • 5 million native oaks have died since 1995 because of Sudden Oak Death. A study of SOD by University of Cambridge said in spring 2016 that the SOD epidemic is “unstoppable” and predicted that most oaks in California would eventually be killed by SOD. The Oak Mortality Task Force reported the results of its annual survey for 2016 recently.  They said that SOD infections increased greatly in 2016 and that infections that were dormant in 2015 are active again.  This resurgence of the pathogen causing SOD is caused by increased rain in 2016.
  • Scientists predict that redwood trees will “relocate from the coast of California to southern Oregon” in response to changes in the climate.

If you care about climate change, please join us in this effort to create a grant program that will expand our urban forests and reduce the greenhouse gas emissions that are causing climate change.  Restrictions against planting non-native trees must be removed from grant guidelines in order to increase our tree canopies in California’s urban environments. 

Update:  Final guidelines for California State Urban Greening grant applications were published on March 1, 2017, and are available HERE.  That program will distribute $76 million to cities that reduce greenhouse gas emissions by planting trees or reducing fossil fuels emissions.  The deadline for grant applications is May 1, 2017.  There will be a workshop for applicants at the Lake Temescal Beach House (6500 Broadway, Oakland) on March 27, 2017.

Final guidelines are improved from the draft guidelines.  Draft guidelines would have required applicants to plant only native trees.  The State agency received 62 public comments on the draft.  27 of those comments asked that the guidelines be revised to permit planting non-native trees as well as native trees.  One of the 27 comment letters was signed by 33 tree-advocacy non-profit organizations. 

Final guidelines reflect the public’s opposition to prohibiting the planting of non-native trees, which would have severely limited the number of trees that would survive.  Native trees have specific horticultural requirements that limit the places where they can be planted.

Final guidelines now say that only “invasive” trees cannot be planted by grant projectsIf the granting agency uses the classification of the California Invasive Plant Council to determine “invasiveness,” applicants would not be allowed to plant 15 specific tree species.  However, the California Invasive Plant Council is revising its inventory of “invasive” plants, so we don’t know if the number of “invasive” trees will be increased by that revision.

Update #2:  The California Invasive Plant Council has published the proposed revision to its list of “invasive” species.  There were about 200 plants on the existing list.  Now they propose to add another 99 species.  Ten of those species are added based on their current impacts in California.  One of the ten is a tree (glossy privet).  87 of the species are proposed for addition “based on risk of becoming invasive” in the future in California.  Twelve of the 89 potentially invasive plants are trees. 

There were 15 trees on the original list of “invasive” species.  That means that the revised list of “invasive” trees will now include a total of 28 trees that cannot be planted by Urban Greening projects that are applying for grant funds. 

The revised inventory of “invasive” plants was just published.  Public comments can be submitted on the proposed revisions by May 8.  The proposed revisions and how to make comments on the proposal are available HERE

Personally, I object to the introduction of a new category of 89 plants that are not presently having any “impact” according to Cal-IPC but are predicted to in the future.  These revisions will increase the inventory of “invasive” plants by 50%.  It represents a significant escalation of the crusade against non-native plants in the California. 


Nativist bias is not entirely absent from the revised guidelines for the Urban Greening program.  Applicants are required to explain why they plan to plant non-native trees.  However, applicants are also required to have a certified arborist or comparable horticultural expert certify that the plant list is appropriate to the planting location.  Hopefully, that will prevent the wasteful planting of native trees where they will not survive.